
Assembly Language for x86 Processors
7th Edition

Chapter 13: High-Level Language
Interface

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Introduction
• Inline Assembly Code
• Linking 32-Bit Assembly Language Code to C/C++

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Why Link ASM and HLL Programs?

• Use high-level language for overall project
development
• Relieves programmer from low-level details

• Use assembly language code
• Speed up critical sections of code
• Access nonstandard hardware devices
• Write platform-specific code
• Extend the HLL's capabilities

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

General Conventions

• Considerations when calling assembly language
procedures from high-level languages:
• Both must use the same naming convention (rules

regarding the naming of variables and procedures)
• Both must use the same memory model, with

compatible segment names
• Both must use the same calling convention

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Calling Convention

• Identifies specific registers that must be preserved by
procedures

• Determines how arguments are passed to
procedures: in registers, on the stack, in shared
memory, etc.

• Determines the order in which arguments are passed
by calling programs to procedures

• Determines whether arguments are passed by value
or by reference

• Determines how the stack pointer is restored after a
procedure call

• Determines how functions return values

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

External Identifiers

• An external identifier is a name that has been placed
in a module’s object file in such a way that the linker
can make the name available to other program
modules.

• The linker resolves references to external identifiers,
but can only do so if the same naming convention is
used in all program modules.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

What's Next

• Introduction
• Inline Assembly Code
• Linking 32-Bit Assembly Language Code to C/C++

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

Inline Assembly Code

• Assembly language source code that is inserted directly
into a HLL program.

• Compilers such as Microsoft Visual C++ and Borland
C++ have compiler-specific directives that identify inline
ASM code.

• Efficient inline code executes quickly because CALL
and RET instructions are not required.

• Simple to code because there are no external names,
memory models, or naming conventions involved.

• Decidedly not portable because it is written for a single
platform.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

_asm Directive in Microsoft Visual C++

• Can be placed at the beginning of a single statement
• Or, It can mark the beginning of a block of assembly

language statements
• Syntax:

__asm statement

__asm {
 statement-1
 statement-2
 ...
 statement-n
}

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Commenting Styles

mov esi,buf ; initialize index register
mov esi,buf // initialize index register
mov esi,buf /* initialize index register */

All of the following comment styles are acceptable, but
the latter two are preferred:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

You Can Do the Following . . .

• Use any instruction from the Intel instruction set
• Use register names as operands
• Reference function parameters by name
• Reference code labels and variables that were

declared outside the asm block
• Use numeric literals that incorporate either

assembler-style or C-style radix notation
• Use the PTR operator in statements such as inc

BYTE PTR [esi]
• Use the EVEN and ALIGN directives
• Use LENGTH, TYPE, and SIZE directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

You Cannot Do the Following . . .

• Use data definition directives such as DB, DW, or
BYTE

• Use assembler operators other than PTR
• Use STRUCT, RECORD, WIDTH, and MASK
• Use the OFFSET operator (but LEA is ok)
• Use macro directives such as MACRO, REPT, IRC,

IRP
• Reference segments by name.

• (You can, however, use segment register names as
operands.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Register Usage

• In general, you can modify EAX, EBX, ECX, and EDX
in your inline code because the compiler does not
expect these values to be preserved between
statements

• Conversely, always save and restore ESI, EDI, and
EBP.

See the Inline Test demonstration program.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

File Encryption Example

• Reads a file, encrypts it, and writes the output to
another file.

• The TranslateBuffer function uses an __asm block to
define statements that loop through a character array
and XOR each character with a predefined value.

View the Encode2.cpp program listing

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

What's Next

• Introduction
• Inline Assembly Code
• Linking 32-Bit Assembly Language Code to C/C++

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

Linking Assembly Language to Visual C++

• Basic Structure - Two Modules
• The first module, written in assembly language,

contains the external procedure
• The second module contains the C/C++ code that

starts and ends the program
• The C++ module adds the extern qualifier to the

external assembly language function prototype.
• The "C" specifier must be included to prevent name

decoration by the C++ compiler:

extern "C" functionName(parameterList);

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

Name Decoration

HLL compilers do this to uniquely identify overloaded
functions. A function such as:

int ArraySum(int * p, int count)

would be exported as a decorated name that encodes
the return type, function name, and parameter types.
For example:

int_ArraySum_pInt_int

The problem with name decoration is that the C++
compiler assumes that your assembly language
function's name is decorated. The C++ compiler tells
the linker to look for a decorated name.

C++ compilers vary in the way they decorate function
names.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

Summary

• Use assembly language top optimize sections of
applications written in high-level languages
• inline asm code
• linked procedures

• Naming conventions, name decoration
• Calling convention determined by HLL program
• OK to call C functions from assembly language

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

The End

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Why Link ASM and HLL Programs?
	General Conventions
	Calling Convention
	External Identifiers
	What's Next
	Inline Assembly Code
	_asm Directive in Microsoft Visual C++
	Commenting Styles
	You Can Do the Following . . .
	You Cannot Do the Following . . .
	Register Usage
	File Encryption Example
	What's Next
	Linking Assembly Language to Visual C++
	Name Decoration
	Summary
	The End

