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Chapter Overview 

• MS-DOS and the IBM-PC 
• MS-DOS Function Calls (INT 21h) 
• Standard MS-DOS File I/O Services 
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MS-DOS and the IBM-PC 

• Real-Address Mode 
• MS-DOS Memory Organization 
• MS-DOS Memory Map 
• Redirecting Input-Output 
• Software Interrupts 
• INT Instruction 
• Interrupt Vectoring Process 
• Common Interrupts 
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Real-Address Mode 

• Real-address mode (16-bit mode) programs have 
the following characteristics: 
• Max 1 megabyte addressable RAM 
• Single tasking 
• No memory boundary protection 
• Offsets are 16 bits 

• IBM PC-DOS:  first Real-address OS for IBM-PC 
• Has roots in Gary Kildall's highly successful Digital 

Research CP/M 
• Later renamed to MS-DOS, owned by Microsoft 
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MS-DOS Memory Organization 

• Interrupt Vector Table 
• BIOS & DOS data 
• Software BIOS 
• MS-DOS kernel 
• Resident command processor 
• Transient programs 
• Video graphics & text 
• Reserved (device controllers) 
• ROM BIOS 
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Real-Address mode 

• 1 MB RAM maximum addressable 
• Application programs can access any area 

of memory 
• Single tasking 
• Supported by MS-DOS operating system 
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Segmented Memory 
Segmented memory addressing: absolute (linear) address is a 
combination of a 16-bit segment value added to a 16-bit offset  

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

8000:0000

8000:FFFF

seg ofs

8000:0250

0250

one segment 
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Calculating Linear Addresses 

• Given a segment address, multiply it by 16 (add a 
hexadecimal zero), and add it to the offset 

• Example: convert 08F1:0100 to a linear address 

Adjusted Segment value: 0 8 F 1 0 

Add the offset:           0 1 0 0 

Linear address:         0 9 0 1 0 
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Your turn . . . 

What linear address corresponds to the segment/offset 
address 028F:0030? 

028F0 + 0030 = 02920 

Always use hexadecimal notation for addresses. 
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Your turn . . . 

What segment addresses correspond to the linear address 
28F30h? 

Many different segment-offset addresses can produce the 
linear address 28F30h. For example: 

 28F0:0030, 28F3:0000, 28B0:0430, . . . 
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MS-DOS Memory Map 

ROM BIOS

Reserved

Video Text & Graphics

Video Graphics

Resident Command Processor

DOS Kernel, Device Drivers

Software BIOS

BIOS & DOS Data

Interrupt Vector Table

FFFFF

00400

A0000

B8000

C0000

F0000

00000

Address

640K RAM

Transient Program Area
(available for application programs)

Transient Command Processor

VRAM
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Redirecting Input-Output  (1 of 2) 

• Input-output devices and files are interchangeable 
• Three primary types of I/O: 

• Standard input (console, keyboard) 
• Standard output (console, display) 
• Standard error (console, display) 

• Symbols borrowed from Unix: 
• < symbol: get input from 
• > symbol: send output to 
• | symbol: pipe output from one process to another 

• Predefined device names: 
• PRN, CON, LPT1, LPT2, NUL, COM1, COM2 
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Redirecting Input-Output (2 of 2) 

• Standard input, standard output can both be redirected 
• Standard error cannot be redirected 
• Suppose we have created a program named 

myprog.exe that reads from standard input and writes 
to standard output. Following are MS-DOS commands 
that demonstrate various types of redirection: 

myprog < infile.txt 
 
myprog > outfile.txt 
 
myprog < infile.txt > outfile.txt 
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INT Instruction 
• The INT instruction executes a software interrupt. 
• The code that handles the interrupt is called an 

interrupt handler. 
• Syntax: 

INT number 

(number = 0..FFh) 

The Interrupt Vector Table (IVT) holds a 32-bit segment-
offset address for each possible interrupt handler. 

Interrupt Service Routine (ISR) is another name for interrupt 
handler. 
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Interrupt Vectoring Process 

mov...
int 10h
add...

F000:F0653069 F000:AB62

 F000:F065
      F066
      F067
      F068
       .
       .

  sti
  cld
  push es
  .
  .
  IRET

1 2

3
Calling program

(entry for INT 10)

Interrupt Vector Table

Interrupt Handler

4
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Common Interrupts 

• INT 10h Video Services 
• INT 16h Keyboard Services 
• INT 17h Printer Services 
• INT 1Ah Time of Day 
• INT 1Ch User Timer Interrupt 
• INT 21h MS-DOS Services 
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What's Next 

• MS-DOS and the IBM-PC 
• MS-DOS Function Calls (INT 21h) 
• Standard MS-DOS File I/O Services 
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MS-DOS Function Calls (INT 21h) 

• ASCII Control Characters 
• Selected Output Functions 
• Selected Input Functions 
• Example: String Encryption 
• Date/Time Functions 
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INT 4Ch: Terminate Process 

• Ends the current process (program), returns an 
optional 8-bit return code to the calling process. 

• A return code of 0 usually indicates successful 
completion. 

mov ah,4Ch ; terminate process 
mov al,0 ; return code 
int 21h 
 
; Same as: 
 
.EXIT 0 
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Selected Output Functions 

• ASCII control characters 
• 02h, 06h - Write character to standard output 
• 05h - Write character to default printer 
• 09h - Write string to standard output 
• 40h - Write string to file or device 
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ASCII Control Characters 

• 08h - Backspace (moves one column to the left) 
• 09h - Horizontal tab (skips forward n columns) 
• 0Ah - Line feed (moves to next output line) 
• 0Ch - Form feed (moves to next printer page) 
• 0Dh - Carriage return (moves to leftmost output 

column) 
• 1Bh - Escape character 

Many INT 21h functions act upon the following 
control characters: 
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INT 21h Functions 02h and 06h:  
Write Character to Standard Output 

Write the letter 'A' to standard output: 

mov ah,02h 
mov dl,’A’ 
int 21h 

Write a backspace to standard output: 

mov ah,06h 
mov dl,08h 
int 21h 

or: mov ah,2 
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INT 21h Function 05h:  
Write Character to Default Printer 

Write the letter 'A': 

mov ah,05h 
mov dl,65 
int 21h 

Write a horizontal tab: 

mov ah,05h 
mov dl,09h 
int 21h 
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INT 21h Function 09h:  
Write String to Standard Output 

.data 
string BYTE "This is a string$" 
 
.code 
mov  ah,9 
mov  dx,OFFSET string 
int  21h 

• The string must be terminated by a '$' character. 
• DS must point to the string's segment, and DX 

must contain the string's offset: 
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INT 21h Function 40h:  
Write String to File or Device 

.data 
message "Writing a string to the console" 
bytesWritten WORD ? 
 
.code 

mov ah,40h 
mov bx,1 
mov cx,LENGTHOF message 
mov dx,OFFSET message 
int 21h 
mov bytesWritten,ax 

Input: BX = file or device handle (console = 1), CX = 
number of bytes to write, DS:DX = address of array 
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Selected Input Functions 

• 01h, 06h - Read character from standard input 
• 0Ah - Read array of buffered characters from 

standard input 
• 0Bh - Get status of the standard input buffer 
• 3Fh - Read from file or device 
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INT 21h Function 01h:  
Read single character from standard input 

.data 
char BYTE ? 
.code 
mov ah,01h 
int 21h 
mov char,al 

• Echoes the input character 
• Waits for input if the buffer is empty 
• Checks for Ctrl-Break (^C) 
• Acts on control codes such as horizontal Tab 
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INT 21h Function 06h:  
Read character from standard input without waiting 

.data 
char BYTE ? 
.code 
L1: mov  ah,06h ; keyboard input 
 mov  dl,0FFh ; don't wait for input 
 int  21h 
  jz   L1 ; no character? repeat loop 
 mov  char,al ; character pressed: save it 
 call DumpRegs ; display registers 

• Does not echo the input character 
• Does not wait for input (use the Zero flag to check for 

an input character) 
• Example: repeats loop until a character is pressed. 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29 

INT 21h Function 0Ah:  
Read buffered array from standard input (1 of 2) 

count = 80 
 
KEYBOARD STRUCT 
 maxInput BYTE count  ; max chars to input 
 inputCount BYTE ?  ; actual input count 
 buffer BYTE count DUP(?)  ; holds input chars 
KEYBOARD ENDS 

• Requires a predefined structure to be set up that 
describes the maximum input size and holds the 
input characters.  

• Example: 
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INT 21h Function 0Ah (2 of 2) 

.data 
kybdData KEYBOARD <> 
 
.code 
 mov ah,0Ah 
 mov dx,OFFSET kybdData 
 int 21h 
 

Executing the interrupt: 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31 

INT 21h Function 0Bh:  
Get status of standard input buffer 

L1: mov ah,0Bh ; get buffer status 
 int 21h 
  cmp al,0 ; buffer empty? 
  je  L1 ; yes: loop again 
 mov ah,1 ; no: input the key 
 int 21h 
 mov char,al ; and save it 

• Can be interrupted by Ctrl-Break (^C) 
• Example: loop until a key is pressed. Save the 

key in a variable: 
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Example: String Encryption 

XORVAL = 239 ; any value between 0-255 
.code 
main PROC 
 mov  ax,@data 
 mov  ds,ax 
L1: mov  ah,6 ; direct console input 
 mov  dl,0FFh ; don't wait for character 
 int  21h ; AL = character 
 jz   L2 ; quit if ZF = 1 (EOF) 
 xor  al,XORVAL 
 mov  ah,6 ; write to output 
 mov  dl,al 
 int  21h 
 jmp  L1 ; repeat the loop 
L2: exit 

Reads from standard input, encrypts each byte, writes to 
standard output. 
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INT 21h Function 3Fh:  
Read from file or device 

.data 
inputBuffer BYTE 127 dup(0) 
bytesRead WORD ? 
.code 
mov  ah,3Fh 
mov  bx,0 ; keyboard handle 
mov  cx,127 ; max bytes to read 
mov  dx,OFFSET inputBuffer ; target location 
int  21h 
mov  bytesRead,ax ; save character count 

• Reads a block of bytes. 
• Can be interrupted by Ctrl-Break (^C) 
• Example: Read string from keyboard: 
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Date/Time Functions 

• 2Ah - Get system date 
• 2Bh - Set system date * 
• 2Ch - Get system time 
• 2Dh - Set system time * 

* may be restricted by your user profile if running a console 
window under Windows NT, 2000, and XP. 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35 

INT 21h Function 2Ah:  
Get system date 

mov  ah,2Ah 
int  21h 
mov  year,cx 
mov  month,dh 
mov  day,dl 
mov  dayOfWeek,al 

• Returns year in CX, month in DH, day in DL, and 
day of week in AL 
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INT 21h Function 2Bh:  
Set system date 

mov  ah,2Bh 
mov  cx,year 
mov  dh,month 
mov  dl,day 
int  21h 
cmp  al,0 
jne  failed 

• Sets the system date. AL = 0 if the function was 
not successful in modifying the date. 
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INT 21h Function 2Ch:  
Get system time 

mov  ah,2Ch 
int  21h 
mov  hours,ch 
mov  minutes,cl 
mov  seconds,dh 

• Returns hours (0-23) in CH, minutes (0-59) in 
CL, and seconds (0-59) in DH, and hundredths 
(0-99) in DL. 
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INT 21h Function 2Dh:  
Set system time 

mov  ah,2Dh 
mov  ch,hours 
mov  cl,minutes 
mov  dh,seconds 
int  21h 
cmp  al,0 
jne  failed 

• Sets the system date. AL = 0 if the function was 
not successful in modifying the time. 
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Example: Displaying the Date and Time 

• Displays the system date and time, using INT 21h 
Functions 2Ah and 2Ch. 

• Demonstrates simple date formatting 
• View the source code 
• Sample output: 

Date: 12-8-2001,   Time: 23:01:23 

ToDo: write a procedure named ShowDate that displays any date 
in mm-dd-yyyy format. 
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What's Next 

• MS-DOS and the IBM-PC 
• MS-DOS Function Calls (INT 21h) 
• Standard MS-DOS File I/O Services 
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Standard MS-DOS File I/O Services 

• 716Ch - Create or open file 
• 3Eh - Close file handle 
• 42h - Move file pointer 
• 5706h - Get file creation date and time 
• Selected Irvine16 Library Procedures 
• Example: Read and Copy a Text File 
• Reading the MS-DOS Command Tail 
• Example: Creating a Binary File 
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INT 21h Function 716Ch:  
Create or open file 

• AX = 716Ch 
• BX = access mode (0 = read, 1 = write, 2 = read/write) 
• CX = attributes (0 = normal, 1 = read only, 2 = hidden,  

         3 = system, 8 = volume ID, 20h = archive) 
• DX = action (1 = open, 2 = truncate, 10h = create) 
• DS:SI = segment/offset of filename 
• DI = alias hint (optional) 
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Example: Create a New File 

mov  ax,716Ch ; extended open/create 
mov  bx,2 ; read-write 
mov  cx,0       ; normal attribute 
mov  dx,10h + 02h ; action: create + truncate 
mov  si,OFFSET Filename 
int  21h 
jc   failed 
mov  handle,ax         ; file handle 
mov  actionTaken,cx    ; action taken to open file 
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Example: Open an Existing File 

mov  ax,716Ch               ; extended open/create 
mov  bx,0                   ; read-only 
mov  cx,0                   ; normal attribute 
mov  dx,1                   ; open existing file 
mov  si,OFFSET Filename 
int  21h 
jc   failed 
mov  handle,ax              ; file handle 
mov  actionTaken,cx         ; action taken to open file 
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INT 21h Function 3Eh:  
Close file handle 

.data 
filehandle WORD ? 
.code 
 mov  ah,3Eh 
 mov  bx,filehandle     
 int  21h 
 jc   failed 

• Use the same file handle that was returned by 
INT 21h when the file was opened. 

• Example: 
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INT 21h Function 42h:  
Move file pointer 

mov   ah,42h 
mov   al,0        ; offset from beginning 
mov   bx,handle 
mov   cx,offsetHi 
mov   dx,offsetLo 
int   21h 

AL indicates how the pointer's offset is calculated: 
0: Offset from the beginning of the file 
1: Offset from the current pointer location  
2: Offset from the end of the file 

Permits random access to a file (text or binary). 
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INT 21h Function 5706h:  
Get file creation date and time 

mov ax,5706h 
mov bx,handle ; handle of open file 
int 21h 
jc  error 
mov date,dx 
mov time,cx 
mov milliseconds,si 

• Obtains the date and time when a file was created 
(not necessarily the same date and time when the 
file was last modified or accessed.) 
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Selected Irvine16 Library Procedures 

• 16-Bit ReadString procedure 
• 16-Bit WriteString procedure 
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ReadString Procedure 

.data 
buffer BYTE 20 DUP(?) 
.code 
mov  dx,OFFSET buffer 
mov  cx,LENGTHOF buffer 
call ReadString 

The ReadString procedure from the Irvine16 library reads a 
string from standard input and returns a null-terminated string. 
When calling it, pass a pointer to a buffer in DX. Pass a count 
of the maximum number of characters to input, plus 1, in CX. 
Writestring inputs the string from the user, returning when either 
of the following events occurs: 

1.CX –1 characters were entered. 
2.The user pressed the Enter key. 
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ReadString Procedure 

.data 
buffer BYTE 20 DUP(?) 
.code 
mov  edx,OFFSET buffer 
mov  ecx,LENGTHOF buffer 
call ReadString 

You can also call it using 32-bit registers: 

ReadString returns a count of the number of characters actually 
read in the EAX register. 
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ReadString Implementation 
ReadString PROC 
 push cx ; save registers 
 push si 
 push cx ; save character count 
 mov  si,dx ; point to input buffer 
 dec  cx ; save room for null byte 
L1: mov  ah,1 ; function: keyboard input 
 int  21h ; returns character in AL 
 cmp  al,0Dh ; end of line? 
 je   L2 ; yes: exit 
 mov  [si],al ; no: store the character 
 inc  si ; increment buffer pointer 
 loop L1 ; loop until CX=0 
L2: mov  BYTE PTR [si],0 ; insert null byte 
 pop  ax ; original digit count 
 sub  ax,cx ; AX = size of input string 
 pop  si ; restore registers 
 pop  cx 
 ret 
ReadString ENDP ; returns AX = size of string 
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16-Bit WriteString Procedure 

WriteString PROC 
 pusha 
 INVOKE Str_length,dx ; AX = string length 
 mov  cx,ax          ; CX = number of bytes 
 mov  ah,40h         ; write to file or device 
 mov  bx,1           ; standard output handle 
 int  21h            ; call MS-DOS 
 popa 
 ret 
WriteString ENDP 

Receives: DX contains the offset of a null-terminated string. 

(May be different from the version printed on page 482.) 
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Example: Read and Copy a Text File 

• The Readfile.asm program demonstrates several INT 
21h functions:  
• Function 716Ch: Create new file or open existing file 
• Function 3Fh: Read from file or device 
• Function 40h: Write to file or device 
• Function 3Eh: Close file handle 

View the source code 
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Reading the MS-DOS Command Tail 

• When a program runs, any additional text on its 
command line is automatically stored in the 128-byte 
MS-DOS command tail area, at offset 80h in the 
program segment prefix (PSP).  

• Example: run a program named attr.exe and pass 
it "FILE1.DOC" as the command tail: 

0A 20 46 49 4C 45 31 2E 44 434F 0D

80 81 82 83 84 85 86 87 88 89 8A 8BOffset:

Contents:

F I L E 1 . D O C

View the Get_CommandTail library procedure source code. 
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Example: Creating a Binary File 

• A binary file contains fields that are are generally not 
recognizable when displayed on the screen. 

• Advantage: Reduces I/O processing time 
• Example: translating a 5-digit ASCII integer to binary 

causes approximately 100 instructions to execute. 

• Disadvantage: may require more disk space 
• Example: array of 4 doublewords: 

• "795 43 1234 2" - requires 13 bytes in ASCII 
• requires 16 bytes in binary 
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Summary 

• MS-DOS applications 
• 16-bit segments, segmented addressing, running in real-

address mode 
• complete access to memory and hardware 

• Software interrupts 
• processed by interrupt handlers 

• INT (call to interrrupt procedure) instruction 
• pushes flags & return address on the stack 
• uses interrupt vector table to find handler 

• Program Segment Prefix (PSP) 
• BIOS Services (INT 10h, INT 16h, INT 17h, ...) 
• MS-DOS Services (INT 21h)  
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The End 
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