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Chapter Overview 

• Introduction 
• Inline Assembly Code 
• Linking 32-Bit Assembly Language Code to C/C++  
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Why Link ASM and HLL Programs? 

• Use high-level language for overall project 
development 
• Relieves programmer from low-level details 

• Use assembly language code 
• Speed up critical sections of code 
• Access nonstandard hardware devices 
• Write platform-specific code 
• Extend the HLL's capabilities 
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General Conventions 

• Considerations when calling assembly language 
procedures from high-level languages: 
• Both must use the same naming convention (rules 

regarding the naming of variables and procedures) 
• Both must use the same memory model, with 

compatible segment names 
• Both must use the same calling convention 
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Calling Convention 

• Identifies specific registers that must be preserved by 
procedures 

• Determines how arguments are passed to 
procedures: in registers, on the stack, in shared 
memory, etc. 

• Determines the order in which arguments are passed 
by calling programs to procedures 

• Determines whether arguments are passed by value 
or by reference 

• Determines how the stack pointer is restored after a 
procedure call 

• Determines how functions return values 
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External Identifiers 

• An external identifier is a name that has been placed 
in a module’s object file in such a way that the linker 
can make the name available to other program 
modules.  

• The linker resolves references to external identifiers, 
but can only do so if the same naming convention is 
used in all program modules. 
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What's Next 

• Introduction 
• Inline Assembly Code 
• Linking 32-Bit Assembly Language Code to C/C++  
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Inline Assembly Code 

• Assembly language source code that is inserted directly 
into a HLL program. 

• Compilers such as Microsoft Visual C++ and Borland 
C++ have compiler-specific directives that identify inline 
ASM code. 

• Efficient inline code executes quickly because CALL 
and RET instructions are not required. 

• Simple to code because there are no external names, 
memory models, or naming conventions involved. 

• Decidedly not portable because it is written for a single 
platform. 
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_asm Directive in Microsoft Visual C++ 

• Can be placed at the beginning of a single statement 
• Or, It can mark the beginning of a block of assembly 

language statements 
• Syntax: 

__asm  statement 
 
__asm { 
  statement-1 
  statement-2 
  ... 
  statement-n 
} 
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Commenting Styles 

mov  esi,buf     ; initialize index register 
mov  esi,buf    // initialize index register 
mov  esi,buf    /* initialize index register */ 

All of the following comment styles are acceptable, but 
the latter two are preferred: 
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You Can Do the Following . . . 

• Use any instruction from the Intel instruction set 
• Use register names as operands 
• Reference function parameters by name 
• Reference code labels and variables that were 

declared outside the asm block  
• Use numeric literals that incorporate either 

assembler-style or C-style radix notation  
• Use the PTR operator in statements such as inc 

BYTE PTR [esi] 
• Use the EVEN and ALIGN directives 
• Use LENGTH, TYPE, and SIZE directives 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12 

You Cannot Do the Following . . . 

• Use data definition directives such as DB, DW, or 
BYTE 

• Use assembler operators other than PTR 
• Use STRUCT, RECORD, WIDTH, and MASK 
• Use the OFFSET operator (but LEA is ok) 
• Use macro directives such as MACRO, REPT, IRC, 

IRP 
• Reference segments by name.  

• (You can, however, use segment register names as 
operands.) 
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Register Usage 

• In general, you can modify EAX, EBX, ECX, and EDX 
in your inline code because the compiler does not 
expect these values to be preserved between 
statements 

• Conversely, always save and restore ESI, EDI, and 
EBP. 

See the Inline Test demonstration program. 
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File Encryption Example 

• Reads a file, encrypts it, and writes the output to 
another file.  

• The TranslateBuffer function uses an __asm block to 
define statements that loop through a character array 
and XOR each character with a predefined value.  

View the Encode2.cpp program listing 
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What's Next 

• Introduction 
• Inline Assembly Code 
• Linking 32-Bit Assembly Language Code to C/C++  
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Linking Assembly Language to Visual C++ 

• Basic Structure - Two Modules 
• The first module, written in assembly language, 

contains the external procedure 
• The second module contains the C/C++ code that 

starts and ends the program  
• The C++ module adds the extern qualifier to the 

external assembly language function prototype. 
• The "C" specifier must be included to prevent name 

decoration by the C++ compiler: 

extern "C" functionName( parameterList ); 
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Name Decoration 

HLL compilers do this to uniquely identify overloaded 
functions. A function such as: 

int ArraySum( int * p, int count ) 

would be exported as a decorated name that encodes 
the return type, function name, and parameter types. 
For example: 

int_ArraySum_pInt_int 

The problem with name decoration is that the C++ 
compiler assumes that your assembly language 
function's name is decorated. The C++ compiler tells 
the linker to look for a decorated name. 

C++ compilers vary in the way they decorate function 
names. 
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Summary 

• Use assembly language top optimize sections of 
applications written in high-level languages 
• inline asm code 
• linked procedures 

• Naming conventions, name decoration 
• Calling convention determined by HLL program 
• OK to call C functions from assembly language 
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The End 
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