
Assembly Language for x86 Processors
7th Edition

Chapter 3: Assembly Language
Fundamentals

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slides prepared by the author
Revision date: 1/15/2014

Kip Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Basic Elements of Assembly Language
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Running Programs
• Defining Data
• Symbolic Constants
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Basic Elements of Assembly Language

• Integer constants
• Integer expressions
• Character and string constants
• Reserved words and identifiers
• Directives and instructions
• Labels
• Mnemonics and Operands
• Comments
• Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Integer Constants

• Optional leading + or – sign
• binary, decimal, hexadecimal, or octal digits
• Common radix characters:

• h – hexadecimal
• d – decimal
• b – binary
• r – encoded real

Examples: 30d, 6Ah, 42, 1101b
Hexadecimal beginning with letter: 0A5h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Integer Expressions

• Operators and precedence levels:

• Examples:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

Character and String Constants

• Enclose character in single or double quotes
• 'A', "x"
• ASCII character = 1 byte

• Enclose strings in single or double quotes
• "ABC"
• 'xyz'
• Each character occupies a single byte

• Embedded quotes:
• 'Say "Goodnight," Gracie'

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

Reserved Words and Identifiers

• Reserved words cannot be used as identifiers
• Instruction mnemonics, directives, type attributes,

operators, predefined symbols
• See MASM reference in Appendix A

• Identifiers
• 1-247 characters, including digits
• not case sensitive
• first character must be a letter, _, @, ?, or $

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

Directives

• Commands that are recognized and acted
upon by the assembler
• Not part of the Intel instruction set
• Used to declare code, data areas, select

memory model, declare procedures, etc.
• not case sensitive

• Different assemblers have different directives
• NASM not the same as MASM, for example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Instructions

• Assembled into machine code by assembler
• Executed at runtime by the CPU
• We use the Intel IA-32 instruction set
• An instruction contains:

• Label (optional)
• Mnemonic (required)
• Operand (depends on the instruction)
• Comment (optional)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Labels

• Act as place markers
• marks the address (offset) of code and data

• Follow identifer rules
• Data label

• must be unique
• example: myArray (not followed by colon)

• Code label
• target of jump and loop instructions
• example: L1: (followed by colon)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Mnemonics and Operands

• Instruction Mnemonics
• memory aid
• examples: MOV, ADD, SUB, MUL, INC, DEC

• Operands
• constant
• constant expression
• register
• memory (data label)

Constants and constant expressions are often called

immediate values

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Comments
• Comments are good!

• explain the program's purpose
• when it was written, and by whom
• revision information
• tricky coding techniques
• application-specific explanations

• Single-line comments
• begin with semicolon (;)

• Multi-line comments
• begin with COMMENT directive and a programmer-

chosen character
• end with the same programmer-chosen character

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Instruction Format Examples

• No operands
• stc ; set Carry flag

• One operand
• inc eax ; register
• inc myByte ; memory

• Two operands
• add ebx,ecx ; register, register
• sub myByte,25 ; memory, constant
• add eax,36 * 25 ; register, constant-expression

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

What's Next

• Basic Elements of Assembly Language
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Running Programs
• Defining Data
• Symbolic Constants
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Example: Adding and Subtracting Integers

; AddTwo.asm – adds two 32-bit integers

.386
.model flat,stdcall
.stack 4096
ExitProcess PROTO, dwExitCode:DWORD
.code
main PROC
 mov eax,5 ; move 5 to the EAX register
 add eax,6 ; add 6 to the EAX register

 INVOKE ExitProcess,0
main ENDP
END main

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

Example Output

Showing registers and flags in the debugger:

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF

ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4

EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

Suggested Coding Standards (1 of 2)

• Some approaches to capitalization
• capitalize nothing
• capitalize everything
• capitalize all reserved words, including instruction

mnemonics and register names
• capitalize only directives and operators

• Other suggestions
• descriptive identifier names
• spaces surrounding arithmetic operators
• blank lines between procedures

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

Suggested Coding Standards (2 of 2)

• Indentation and spacing
• code and data labels – no indentation
• executable instructions – indent 4-5 spaces
• comments: right side of page, aligned vertically
• 1-3 spaces between instruction and its operands

• ex: mov ax,bx
• 1-2 blank lines between procedures

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

Required Coding Standards

• (to be filled in by the professor)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Program Template

; Program Template (Template.asm)

; Program Description:
; Author:
; Creation Date:
; Revisions:
; Date: Modified by:

.386
.model flat,stdcall
.stack 4096
ExitProcess PROTO, dwExitCode:DWORD
.data
; declare variables here
.code
main PROC
 ; write your code here
 INVOKE ExitProcess,0
main ENDP
; (insert additional procedures here)
END main

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

What's Next

• Basic Elements of Assembly Language
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Running Programs
• Defining Data
• Symbolic Constants
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

Assembling, Linking, and Running Programs

• Assemble-Link-Execute Cycle
• Listing File
• Map File

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

Assemble-Link Execute Cycle

• The following diagram describes the steps from creating a
source program through executing the compiled program.

• If the source code is modified, Steps 2 through 4 must be
repeated.

Source
File

Object
File

Listing
File

Link
Library

Executable
File

Map
File

Output

Step 1: text editor

Step 2:
assembler

Step 3:
linker

Step 4:
OS loader

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

Listing File

• Use it to see how your program is compiled
• Contains

• source code
• addresses
• object code (machine language)
• segment names
• symbols (variables, procedures, and constants)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

What's Next

• Basic Elements of Assembly Language
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Running Programs
• Defining Data
• Symbolic Constants
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Defining Data

• Intrinsic Data Types
• Data Definition Statement
• Defining BYTE and SBYTE Data
• Defining WORD and SWORD Data
• Defining DWORD and SDWORD Data
• Defining QWORD Data
• Defining TBYTE Data
• Defining Real Number Data
• Little Endian Order
• Adding Variables to the AddSub Program
• Declaring Uninitialized Data

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Intrinsic Data Types (1 of 2)

• BYTE, SBYTE
• 8-bit unsigned integer; 8-bit signed integer

• WORD, SWORD
• 16-bit unsigned & signed integer

• DWORD, SDWORD
• 32-bit unsigned & signed integer

• QWORD
• 64-bit integer

• TBYTE
• 80-bit integer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Intrinsic Data Types (2 of 2)

• REAL4
• 4-byte IEEE short real

• REAL8
• 8-byte IEEE long real

• REAL10
• 10-byte IEEE extended real

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Data Definition Statement

• A data definition statement sets aside storage in memory for a
variable.

• May optionally assign a name (label) to the data
• Syntax:

[name] directive initializer [,initializer] . . .

 value1 BYTE 10

• All initializers become binary data in memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Defining BYTE and SBYTE Data

value1 BYTE 'A' ; character constant

value2 BYTE 0 ; smallest unsigned byte

value3 BYTE 255 ; largest unsigned byte

value4 SBYTE -128 ; smallest signed byte

value5 SBYTE +127 ; largest signed byte

value6 BYTE ? ; uninitialized byte

Each of the following defines a single byte of storage:

• MASM does not prevent you from initializing a BYTE with a
negative value, but it's considered poor style.

• If you declare a SBYTE variable, the Microsoft debugger will
automatically display its value in decimal with a leading sign.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Defining Byte Arrays

list1 BYTE 10,20,30,40

list2 BYTE 10,20,30,40

 BYTE 50,60,70,80

 BYTE 81,82,83,84

list3 BYTE ?,32,41h,00100010b

list4 BYTE 0Ah,20h,‘A’,22h

Examples that use multiple initializers:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

Defining Strings (1 of 3)

• A string is implemented as an array of characters
• For convenience, it is usually enclosed in quotation marks
• It often will be null-terminated

• Examples:

str1 BYTE "Enter your name",0
str2 BYTE 'Error: halting program',0
str3 BYTE 'A','E','I','O','U'
greeting BYTE "Welcome to the Encryption Demo program "
 BYTE "created by Kip Irvine.",0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Defining Strings (2 of 3)

• To continue a single string across multiple lines, end
each line with a comma:

menu BYTE "Checking Account",0dh,0ah,0dh,0ah,
 "1. Create a new account",0dh,0ah,
 "2. Open an existing account",0dh,0ah,
 "3. Credit the account",0dh,0ah,
 "4. Debit the account",0dh,0ah,
 "5. Exit",0ah,0ah,
 "Choice> ",0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

Defining Strings (3 of 3)

• End-of-line character sequence:
• 0Dh = carriage return
• 0Ah = line feed

str1 BYTE "Enter your name: ",0Dh,0Ah
 BYTE "Enter your address: ",0

newLine BYTE 0Dh,0Ah,0

Idea: Define all strings used by your program in the same
area of the data segment.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

Using the DUP Operator

• Use DUP to allocate (create space for) an array or
string. Syntax: counter DUP (argument)

• Counter and argument must be constants or constant
expressions

var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero

var2 BYTE 20 DUP(?) ; 20 bytes, uninitialized

var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

var4 BYTE 10,3 DUP(0),20 ; 5 bytes

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

Defining WORD and SWORD Data

• Define storage for 16-bit integers
• or double characters
• single value or multiple values

word1 WORD 65535 ; largest unsigned value
word2 SWORD –32768 ; smallest signed value
word3 WORD ? ; uninitialized, unsigned
word4 WORD "AB" ; double characters
myList WORD 1,2,3,4,5 ; array of words
array WORD 5 DUP(?) ; uninitialized array

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Defining DWORD and SDWORD Data

val1 DWORD 12345678h ; unsigned
val2 SDWORD –2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array
val4 SDWORD –3,–2,–1,0,1 ; signed array

Storage definitions for signed and unsigned 32-bit
integers:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

Defining QWORD, TBYTE, Real Data

quad1 QWORD 1234567812345678h
val1 TBYTE 1000000000123456789Ah
rVal1 REAL4 -2.1
rVal2 REAL8 3.2E-260
rVal3 REAL10 4.6E+4096
ShortArray REAL4 20 DUP(0.0)

Storage definitions for quadwords, tenbyte values,
and real numbers:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

Little Endian Order

• All data types larger than a byte store their individual
bytes in reverse order. The least significant byte occurs
at the first (lowest) memory address.

• Example:
 val1 DWORD 12345678h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

Adding Variables to AddSub
TITLE Add and Subtract, Version 2 (AddSub2.asm)
; This program adds and subtracts 32-bit unsigned
; integers and stores the sum in a variable.
INCLUDE Irvine32.inc
.data
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalVal DWORD ?
.code
main PROC
 mov eax,val1 ; start with 10000h

add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP
END main

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

Declaring Unitialized Data

• Use the .data? directive to declare an unintialized
data segment:
 .data?

• Within the segment, declare variables with "?"
initializers:
 smallArray DWORD 10 DUP(?)

Advantage: the program's EXE file size is reduced.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

What's Next

• Basic Elements of Assembly Language
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Running Programs
• Defining Data
• Symbolic Constants
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Symbolic Constants

• Equal-Sign Directive
• Calculating the Sizes of Arrays and Strings
• EQU Directive
• TEXTEQU Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

Equal-Sign Directive

• name = expression
• expression is a 32-bit integer (expression or constant)
• may be redefined
• name is called a symbolic constant

• good programming style to use symbols

COUNT = 500

.

.

mov ax,COUNT

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

Calculating the Size of a Byte Array

• current location counter: $
• subtract address of list
• difference is the number of bytes

list BYTE 10,20,30,40
ListSize = ($ - list)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Calculating the Size of a Word Array

Divide total number of bytes by 2 (the size of a word)

list WORD 1000h,2000h,3000h,4000h
ListSize = ($ - list) / 2

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Calculating the Size of a Doubleword Array

Divide total number of bytes by 4 (the size of a
doubleword)

list DWORD 1,2,3,4
ListSize = ($ - list) / 4

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

EQU Directive

• Define a symbol as either an integer or text
expression.

• Cannot be redefined

PI EQU <3.1416>

pressKey EQU <"Press any key to continue...",0>

.data

prompt BYTE pressKey

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

TEXTEQU Directive

• Define a symbol as either an integer or text expression.
• Called a text macro
• Can be redefined

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">

rowSize = 5

.data

prompt1 BYTE continueMsg

count TEXTEQU %(rowSize * 2) ; evaluates the expression

setupAL TEXTEQU <mov al,count>

.code

setupAL ; generates: "mov al,10"

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

What's Next

• Basic Elements of Assembly Language
• Example: Adding and Subtracting Integers
• Assembling, Linking, and Running Programs
• Defining Data
• Symbolic Constants
• 64-Bit Programming

64-Bit Programming

• MASM supports 64-bit programming, although the
following directives are not permitted:
• INVOKE, ADDR, .model, .386, .stack
• (Other non-permitted directives will be introduced in

later chapters)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

64-Bit Version of AddTwoSum

1: ; AddTwoSum_64.asm - Chapter 3 example.
3: ExitProcess PROTO
5: .data
6: sum DWORD 0
8: .code
9: main PROC
10: mov eax,5
11: add eax,6
12: mov sum,eax
13:
14: mov ecx,0
15: call ExitProcess
16: main ENDP
17: END

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Things to Notice About the Previous Slide

• The following lines are not needed:
 .386
 .model flat,stdcall
 .stack 4096

• INVOKE is not supported.
• CALL instruction cannot receive arguments
• Use 64-bit registers when possible

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Summary

• Integer expression, character constant
• directive – interpreted by the assembler
• instruction – executes at runtime
• code, data, and stack segments
• source, listing, object, map, executable files
• Data definition directives:

• BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, QWORD,
TBYTE, REAL4, REAL8, and REAL10

• DUP operator, location counter ($)
• Symbolic constant

• EQU and TEXTEQU

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

4C 61 46 69 6E

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Basic Elements of Assembly Language
	Integer Constants
	Integer Expressions
	Character and String Constants
	Reserved Words and Identifiers
	Directives
	Instructions
	Labels
	Mnemonics and Operands
	Comments
	Instruction Format Examples
	What's Next
	Example: Adding and Subtracting Integers
	Example Output
	Suggested Coding Standards (1 of 2)
	Suggested Coding Standards (2 of 2)
	Required Coding Standards
	Program Template
	What's Next
	Assembling, Linking, and Running Programs
	Assemble-Link Execute Cycle
	Listing File
	What's Next
	Defining Data
	Intrinsic Data Types (1 of 2)
	Intrinsic Data Types (2 of 2)
	Data Definition Statement
	Defining BYTE and SBYTE Data
	Defining Byte Arrays
	Defining Strings (1 of 3)
	Defining Strings (2 of 3)
	Defining Strings (3 of 3)
	Using the DUP Operator
	Defining WORD and SWORD Data
	Defining DWORD and SDWORD Data
	Defining QWORD, TBYTE, Real Data
	Little Endian Order
	Adding Variables to AddSub
	Declaring Unitialized Data
	What's Next
	Symbolic Constants
	Equal-Sign Directive
	Calculating the Size of a Byte Array
	Calculating the Size of a Word Array
	Calculating the Size of a Doubleword Array
	EQU Directive
	TEXTEQU Directive
	What's Next
	64-Bit Programming
	64-Bit Version of AddTwoSum
	Things to Notice About the Previous Slide
	Summary
	4C 61 46 69 6E

