
Assembly Language for x86 Processors
7th Edition

Chapter 4: Data Transfers,
Addressing, and Arithmetic

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slides prepared by the author
Revision date: 1/15/2014

Kip Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Data Transfer Instructions

• Operand Types
• Instruction Operand Notation
• Direct Memory Operands
• MOV Instruction
• Zero & Sign Extension
• XCHG Instruction
• Direct-Offset Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Operand Types

• Immediate – a constant integer (8, 16, or 32 bits)
• value is encoded within the instruction

• Register – the name of a register
• register name is converted to a number and encoded

within the instruction
• Memory – reference to a location in memory

• memory address is encoded within the instruction, or a
register holds the address of a memory location

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Instruction Operand Notation

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

Direct Memory Operands

• A direct memory operand is a named reference to
storage in memory

• The named reference (label) is automatically
dereferenced by the assembler

.data
var1 BYTE 10h
.code
mov al,var1 ; AL = 10h
mov al,[var1] ; AL = 10h

alternate format

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

MOV Instruction

.data
count BYTE 100
wVal WORD 2
.code
 mov bl,count
 mov ax,wVal
 mov count,al

 mov al,wVal ; error
 mov ax,count ; error
 mov eax,count ; error

• Move from source to destination. Syntax:
MOV destination,source

• No more than one memory operand permitted
• CS, EIP, and IP cannot be the destination
• No immediate to segment moves

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

Your turn . . .

.data
bVal BYTE 100
bVal2 BYTE ?
wVal WORD 2
dVal DWORD 5
.code
 mov ds,45
 mov esi,wVal
 mov eip,dVal
 mov 25,bVal
 mov bVal2,bVal

Explain why each of the following MOV statements are invalid:

immediate move to DS not permitted
 size mismatch
 EIP cannot be the destination
 immediate value cannot be destination
 memory-to-memory move not permitted

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Zero Extension

mov bl,10001111b

movzx ax,bl ; zero-extension

When you copy a smaller value into a larger destination, the
MOVZX instruction fills (extends) the upper half of the destination
with zeros.

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination0 0 0 0 0 0 0 0

0

The destination must be a register.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Sign Extension

mov bl,10001111b

movsx ax,bl ; sign extension

The MOVSX instruction fills the upper half of the destination
with a copy of the source operand's sign bit.

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination1 1 1 1 1 1 1 1

The destination must be a register.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

XCHG Instruction

.data
var1 WORD 1000h
var2 WORD 2000h
.code
xchg ax,bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg var1,bx ; exchange mem, reg
xchg eax,ebx ; exchange 32-bit regs

xchg var1,var2 ; error: two memory operands

XCHG exchanges the values of two operands. At least one
operand must be a register. No immediate operands are
permitted.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Direct-Offset Operands

.data
arrayB BYTE 10h,20h,30h,40h
.code
mov al,arrayB+1 ; AL = 20h
mov al,[arrayB+1] ; alternative notation

A constant offset is added to a data label to produce an
effective address (EA). The address is dereferenced to get the
value inside its memory location.

Q: Why doesn't arrayB+1 produce 11h?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Direct-Offset Operands (cont)

.data
arrayW WORD 1000h,2000h,3000h
arrayD DWORD 1,2,3,4
.code
mov ax,[arrayW+2] ; AX = 2000h
mov ax,[arrayW+4] ; AX = 3000h
mov eax,[arrayD+4] ; EAX = 00000002h

A constant offset is added to a data label to produce an
effective address (EA). The address is dereferenced to get the
value inside its memory location.

; Will the following statements assemble?
mov ax,[arrayW-2] ; ??
mov eax,[arrayD+16] ; ??

What will happen when they run?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Your turn. . .
Write a program that rearranges the values of three doubleword
values in the following array as: 3, 1, 2.

.data
arrayD DWORD 1,2,3

• Step 2: Exchange EAX with the third array value and copy the
value in EAX to the first array position.

• Step1: copy the first value into EAX and exchange it with the
value in the second position.

mov eax,arrayD
xchg eax,[arrayD+4]

xchg eax,[arrayD+8]
mov arrayD,eax

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Evaluate this . . .

• We want to write a program that adds the following three bytes:
 .data
 myBytes BYTE 80h,66h,0A5h

• What is your evaluation of the following code?
 mov al,myBytes
 add al,[myBytes+1]
 add al,[myBytes+2]

• What is your evaluation of the following code?
 mov ax,myBytes
 add ax,[myBytes+1]
 add ax,[myBytes+2]

• Any other possibilities?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

Evaluate this . . . (cont)

.data
myBytes BYTE 80h,66h,0A5h

• How about the following code. Is anything missing?

 movzx ax,myBytes
 mov bl,[myBytes+1]
 add ax,bx
 mov bl,[myBytes+2]
 add ax,bx ; AX = sum

Yes: Move zero to BX before the MOVZX instruction.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

What's Next

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

Addition and Subtraction

• INC and DEC Instructions
• ADD and SUB Instructions
• NEG Instruction
• Implementing Arithmetic Expressions
• Flags Affected by Arithmetic

• Zero
• Sign
• Carry
• Overflow

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

INC and DEC Instructions

• Add 1, subtract 1 from destination operand
• operand may be register or memory

• INC destination
• Logic: destination ← destination + 1

• DEC destination
• Logic: destination ← destination – 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

INC and DEC Examples

.data
myWord WORD 1000h
myDword DWORD 10000000h
.code
 inc myWord ; 1001h
 dec myWord ; 1000h
 inc myDword ; 10000001h

 mov ax,00FFh
 inc ax ; AX = 0100h
 mov ax,00FFh
 inc al ; AX = 0000h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

Your turn...

Show the value of the destination operand after each of the
following instructions executes:

.data
myByte BYTE 0FFh, 0
.code
 mov al,myByte ; AL =
 mov ah,[myByte+1] ; AH =
 dec ah ; AH =
 inc al ; AL =
 dec ax ; AX =

FFh
00h
FFh
00h
FEFF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

ADD and SUB Instructions

• ADD destination, source
• Logic: destination ← destination + source

• SUB destination, source
• Logic: destination ← destination – source

• Same operand rules as for the MOV
instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

ADD and SUB Examples

.data
var1 DWORD 10000h
var2 DWORD 20000h
.code ; ---EAX---
 mov eax,var1 ; 00010000h
 add eax,var2 ; 00030000h
 add ax,0FFFFh ; 0003FFFFh
 add eax,1 ; 00040000h
 sub ax,1 ; 0004FFFFh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

NEG (negate) Instruction

.data
valB BYTE -1
valW WORD +32767
.code
 mov al,valB ; AL = -1
 neg al ; AL = +1
 neg valW ; valW = -32767

Reverses the sign of an operand. Operand can be a register or
memory operand.

Suppose AX contains –32,768 and we apply NEG to it. Will
the result be valid?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

NEG Instruction and the Flags

.data
valB BYTE 1,0
valC SBYTE -128
.code
 neg valB ; CF = 1, OF = 0
 neg [valB + 1] ; CF = 0, OF = 0
 neg valC ; CF = 1, OF = 1

The processor implements NEG using the following internal
operation:

 SUB 0,operand

Any nonzero operand causes the Carry flag to be set.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Implementing Arithmetic Expressions

Rval DWORD ?
Xval DWORD 26
Yval DWORD 30
Zval DWORD 40
.code
 mov eax,Xval
 neg eax ; EAX = -26
 mov ebx,Yval
 sub ebx,Zval ; EBX = -10
 add eax,ebx
 mov Rval,eax ; -36

HLL compilers translate mathematical expressions into
assembly language. You can do it also. For example:
 Rval = -Xval + (Yval – Zval)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Your turn...

 mov ebx,Yval
 neg ebx
 add ebx,Zval
 mov eax,Xval
 sub eax,ebx
 mov Rval,eax

Translate the following expression into assembly language.
Do not permit Xval, Yval, or Zval to be modified:
 Rval = Xval - (-Yval + Zval)

Assume that all values are signed doublewords.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Flags Affected by Arithmetic

• The ALU has a number of status flags that reflect the
outcome of arithmetic (and bitwise) operations
• based on the contents of the destination operand

• Essential flags:
• Zero flag – set when destination equals zero
• Sign flag – set when destination is negative
• Carry flag – set when unsigned value is out of range
• Overflow flag – set when signed value is out of range

• The MOV instruction never affects the flags.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Concept Map

status flags

ALU
conditional jumps

branching logic

arithmetic & bitwise
operations

 part of

used by provide
attached to

affect

CPU

You can use diagrams such as these to express the relationships between assembly
language concepts.

executes

executes

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Zero Flag (ZF)

mov cx,1
sub cx,1 ; CX = 0, ZF = 1
mov ax,0FFFFh
inc ax ; AX = 0, ZF = 1
inc ax ; AX = 1, ZF = 0

The Zero flag is set when the result of an operation produces
zero in the destination operand.

Remember...
• A flag is set when it equals 1.
• A flag is clear when it equals 0.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Sign Flag (SF)

mov cx,0
sub cx,1 ; CX = -1, SF = 1
add cx,2 ; CX = 1, SF = 0

The Sign flag is set when the destination operand is negative.
The flag is clear when the destination is positive.

The sign flag is a copy of the destination's highest bit:

mov al,0
sub al,1 ; AL = 11111111b, SF = 1
add al,2 ; AL = 00000001b, SF = 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

Signed and Unsigned Integers
A Hardware Viewpoint

• All CPU instructions operate exactly the same on

signed and unsigned integers

• The CPU cannot distinguish between signed and
unsigned integers

• YOU, the programmer, are solely responsible for
using the correct data type with each instruction

Added Slide. Gerald Cahill, Antelope Valley College

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Overflow and Carry Flags
A Hardware Viewpoint

• How the ADD instruction affects OF and CF:
• CF = (carry out of the MSB)
• OF = CF XOR MSB

• How the SUB instruction affects OF and CF:
• CF = INVERT (carry out of the MSB)
• negate the source and add it to the destination
• OF = CF XOR MSB

 MSB = Most Significant Bit (high-order bit)
 XOR = eXclusive-OR operation
 NEG = Negate (same as SUB 0,operand)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

Carry Flag (CF)

The Carry flag is set when the result of an operation generates an
unsigned value that is out of range (too big or too small for the
destination operand).

mov al,0FFh
add al,1 ; CF = 1, AL = 00

; Try to go below zero:

mov al,0
sub al,1 ; CF = 1, AL = FF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

Your turn . . .

mov ax,00FFh
add ax,1 ; AX= SF= ZF= CF=
sub ax,1 ; AX= SF= ZF= CF=
add al,1 ; AL= SF= ZF= CF=
mov bh,6Ch
add bh,95h ; BH= SF= ZF= CF=

mov al,2
sub al,3 ; AL= SF= ZF= CF=

For each of the following marked entries, show the values of
the destination operand and the Sign, Zero, and Carry flags:

0100h 0 0 0
00FFh 0 0 0
00h 0 1 1

01h 0 0 1

FFh 1 0 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

Overflow Flag (OF)

The Overflow flag is set when the signed result of an operation is
invalid or out of range.

; Example 1
mov al,+127
add al,1 ; OF = 1, AL = ??

; Example 2
mov al,7Fh ; OF = 1, AL = 80h
add al,1

The two examples are identical at the binary level because 7Fh
equals +127. To determine the value of the destination operand,
it is often easier to calculate in hexadecimal.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

A Rule of Thumb

• When adding two integers, remember that the
Overflow flag is only set when . . .
• Two positive operands are added and their sum is

negative
• Two negative operands are added and their sum is

positive

What will be the values of the Overflow flag?
 mov al,80h
 add al,92h ; OF =

 mov al,-2
 add al,+127 ; OF =

1

0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

Your turn . . .

mov al,-128
neg al ; CF = OF =

mov ax,8000h
add ax,2 ; CF = OF =

mov ax,0
sub ax,2 ; CF = OF =

mov al,-5
sub al,+125 ; OF =

What will be the values of the given flags after each operation?

1 1

0 0

1 0

1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

What's Next

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

Data-Related Operators and Directives

• OFFSET Operator
• PTR Operator
• TYPE Operator
• LENGTHOF Operator
• SIZEOF Operator
• LABEL Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

OFFSET Operator

• OFFSET returns the distance in bytes, of a label from the
beginning of its enclosing segment
• Protected mode: 32 bits
• Real mode: 16 bits

offset

myByte

data segment:

The Protected-mode programs we write use only a single
segment (flat memory model).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

OFFSET Examples

.data
bVal BYTE ?
wVal WORD ?
dVal DWORD ?
dVal2 DWORD ?

.code
mov esi,OFFSET bVal ; ESI = 00404000
mov esi,OFFSET wVal ; ESI = 00404001
mov esi,OFFSET dVal ; ESI = 00404003
mov esi,OFFSET dVal2 ; ESI = 00404007

Let's assume that the data segment begins at 00404000h:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Relating to C/C++

// C++ version:

char array[1000];
char * p = array;

The value returned by OFFSET is a pointer. Compare the
following code written for both C++ and assembly language:

; Assembly language:

.data
array BYTE 1000 DUP(?)
.code
mov esi,OFFSET array

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

PTR Operator

.data
myDouble DWORD 12345678h
.code
mov ax,myDouble ; error – why?

mov ax,WORD PTR myDouble ; loads 5678h

mov WORD PTR myDouble,4321h ; saves 4321h

Overrides the default type of a label (variable). Provides the
flexibility to access part of a variable.

Little endian order is used when storing data in memory
(see Section 3.4.9).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

Little Endian Order

• Little endian order refers to the way Intel stores
integers in memory.

• Multi-byte integers are stored in reverse order, with
the least significant byte stored at the lowest address

• For example, the doubleword 12345678h would be
stored as:

000078

56

34

12

0001

0002

0003

offsetbyte

When integers are loaded from
memory into registers, the bytes are
automatically re-reversed into their
correct positions.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

PTR Operator Examples

.data
myDouble DWORD 12345678h

12345678 00005678

1234

78

56

34

12

0001

0002

0003

offsetdoubleword word byte

myDouble

myDouble + 1

myDouble + 2

myDouble + 3

mov al,BYTE PTR myDouble ; AL = 78h
mov al,BYTE PTR [myDouble+1] ; AL = 56h
mov al,BYTE PTR [myDouble+2] ; AL = 34h
mov ax,WORD PTR myDouble ; AX = 5678h
mov ax,WORD PTR [myDouble+2] ; AX = 1234h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

PTR Operator (cont)

.data
myBytes BYTE 12h,34h,56h,78h

.code
mov ax,WORD PTR [myBytes] ; AX = 3412h
mov ax,WORD PTR [myBytes+2] ; AX = 7856h
mov eax,DWORD PTR myBytes ; EAX = 78563412h

PTR can also be used to combine elements of a smaller data
type and move them into a larger operand. The CPU will
automatically reverse the bytes.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Your turn . . .

.data
varB BYTE 65h,31h,02h,05h
varW WORD 6543h,1202h
varD DWORD 12345678h

.code
mov ax,WORD PTR [varB+2] ; a.
mov bl,BYTE PTR varD ; b.
mov bl,BYTE PTR [varW+2] ; c.
mov ax,WORD PTR [varD+2] ; d.
mov eax,DWORD PTR varW ; e.

Write down the value of each destination operand:

0502h
78h
02h
1234h
12026543h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

TYPE Operator

The TYPE operator returns the size, in bytes, of a single
element of a data declaration.

.data
var1 BYTE ?
var2 WORD ?
var3 DWORD ?
var4 QWORD ?

.code
mov eax,TYPE var1 ; 1
mov eax,TYPE var2 ; 2
mov eax,TYPE var3 ; 4
mov eax,TYPE var4 ; 8

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

LENGTHOF Operator

.data LENGTHOF
byte1 BYTE 10,20,30 ; 3
array1 WORD 30 DUP(?),0,0 ; 32
array2 WORD 5 DUP(3 DUP(?)) ; 15
array3 DWORD 1,2,3,4 ; 4
digitStr BYTE "12345678",0 ; 9

.code
mov ecx,LENGTHOF array1 ; 32

The LENGTHOF operator counts the number of
elements in a single data declaration.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

SIZEOF Operator

.data SIZEOF
byte1 BYTE 10,20,30 ; 3
array1 WORD 30 DUP(?),0,0 ; 64
array2 WORD 5 DUP(3 DUP(?)) ; 30
array3 DWORD 1,2,3,4 ; 16
digitStr BYTE "12345678",0 ; 9

.code
mov ecx,SIZEOF array1 ; 64

The SIZEOF operator returns a value that is equivalent to
multiplying LENGTHOF by TYPE.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Spanning Multiple Lines (1 of 2)

.data
array WORD 10,20,
 30,40,
 50,60

.code
mov eax,LENGTHOF array ; 6
mov ebx,SIZEOF array ; 12

A data declaration spans multiple lines if each line (except the
last) ends with a comma. The LENGTHOF and SIZEOF
operators include all lines belonging to the declaration:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Spanning Multiple Lines (2 of 2)

.data
array WORD 10,20
 WORD 30,40
 WORD 50,60

.code
mov eax,LENGTHOF array ; 2
mov ebx,SIZEOF array ; 4

In the following example, array identifies only the first WORD
declaration. Compare the values returned by LENGTHOF
and SIZEOF here to those in the previous slide:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

LABEL Directive

• Assigns an alternate label name and type to an
existing storage location

• LABEL does not allocate any storage of its own
• Removes the need for the PTR operator

.data
dwList LABEL DWORD
wordList LABEL WORD
intList BYTE 00h,10h,00h,20h
.code
mov eax,dwList ; 20001000h
mov cx,wordList ; 1000h
mov dl,intList ; 00h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

What's Next

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

Indirect Addressing

• Indirect Operands
• Array Sum Example
• Indexed Operands
• Pointers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

Indirect Operands (1 of 2)

.data
val1 BYTE 10h,20h,30h
.code
mov esi,OFFSET val1
mov al,[esi] ; dereference ESI (AL = 10h)

inc esi
mov al,[esi] ; AL = 20h

inc esi
mov al,[esi] ; AL = 30h

An indirect operand holds the address of a variable, usually an
array or string. It can be dereferenced (just like a pointer).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

Indirect Operands (2 of 2)

.data
myCount WORD 0

.code
mov esi,OFFSET myCount
inc [esi] ; error: ambiguous
inc WORD PTR [esi] ; ok

Use PTR to clarify the size attribute of a memory operand.

Should PTR be used here?

 add [esi],20

yes, because [esi] could
point to a byte, word, or
doubleword

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

Array Sum Example

.data
arrayW WORD 1000h,2000h,3000h
.code

mov esi,OFFSET arrayW
mov ax,[esi]
add esi,2 ; or: add esi,TYPE arrayW
add ax,[esi]
add esi,2
add ax,[esi] ; AX = sum of the array

Indirect operands are ideal for traversing an array. Note that the
register in brackets must be incremented by a value that
matches the array type.

ToDo: Modify this example for an array of doublewords.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

Indexed Operands

.data
arrayW WORD 1000h,2000h,3000h
.code
 mov esi,0
 mov ax,[arrayW + esi] ; AX = 1000h
 mov ax,arrayW[esi] ; alternate format
 add esi,2
 add ax,[arrayW + esi]
 etc.

An indexed operand adds a constant to a register to generate
an effective address. There are two notational forms:

 [label + reg] label[reg]

ToDo: Modify this example for an array of doublewords.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

Index Scaling

.data
arrayB BYTE 0,1,2,3,4,5
arrayW WORD 0,1,2,3,4,5
arrayD DWORD 0,1,2,3,4,5

.code
mov esi,4
mov al,arrayB[esi*TYPE arrayB] ; 04
mov bx,arrayW[esi*TYPE arrayW] ; 0004
mov edx,arrayD[esi*TYPE arrayD] ; 00000004

You can scale an indirect or indexed operand to the offset of an
array element. This is done by multiplying the index by the
array's TYPE:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

Pointers

.data
arrayW WORD 1000h,2000h,3000h
ptrW DWORD arrayW
.code
 mov esi,ptrW
 mov ax,[esi] ; AX = 1000h

You can declare a pointer variable that contains the offset of
another variable.

Alternate format:

ptrW DWORD OFFSET arrayW

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

What's Next

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

JMP and LOOP Instructions

• JMP Instruction
• LOOP Instruction
• LOOP Example
• Summing an Integer Array
• Copying a String

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

JMP Instruction

top:
 .
 .
 jmp top

• JMP is an unconditional jump to a label that is usually within
the same procedure.

• Syntax: JMP target

• Logic: EIP ← target

• Example:

A jump outside the current procedure must be to a special type of
label called a global label (see Section 5.5.2.3 for details).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 66

LOOP Instruction

• The LOOP instruction creates a counting loop
• Syntax: LOOP target
• Logic:

• ECX ← ECX – 1
• if ECX != 0, jump to target

• Implementation:

• The assembler calculates the distance, in bytes, between
the offset of the following instruction and the offset of the
target label. It is called the relative offset.

• The relative offset is added to EIP.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

LOOP Example

00000000 66 B8 0000 mov ax,0
00000004 B9 00000005 mov ecx,5

00000009 66 03 C1 L1: add ax,cx
0000000C E2 FB loop L1
0000000E

The following loop calculates the sum of the integers
5 + 4 + 3 +2 + 1:

When LOOP is assembled, the current location = 0000000E (offset of
the next instruction). –5 (FBh) is added to the the current location,
causing a jump to location 00000009:

 00000009 ← 0000000E + FB

offset machine code source code

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 68

Your turn . . .

If the relative offset is encoded in a single signed byte,
 (a) what is the largest possible backward jump?
 (b) what is the largest possible forward jump?

(a) −128

(b) +127

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 69

Your turn . . .

What will be the final value of AX?

 mov ax,6
 mov ecx,4
L1:
 inc ax
 loop L1

How many times will the loop
execute?

 mov ecx,0
X2:
 inc ax
 loop X2

10

4,294,967,296

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 70

Nested Loop
If you need to code a loop within a loop, you must save the
outer loop counter's ECX value. In the following example, the
outer loop executes 100 times, and the inner loop 20 times.

.data
count DWORD ?
.code
 mov ecx,100 ; set outer loop count
L1:
 mov count,ecx ; save outer loop count
 mov ecx,20 ; set inner loop count
L2: .

.
loop L2 ; repeat the inner loop

 mov ecx,count ; restore outer loop count
 loop L1 ; repeat the outer loop

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 71

Summing an Integer Array

.data
intarray WORD 100h,200h,300h,400h
.code

mov edi,OFFSET intarray ; address of intarray
mov ecx,LENGTHOF intarray ; loop counter
mov ax,0 ; zero the accumulator

L1:
add ax,[edi] ; add an integer
add edi,TYPE intarray ; point to next integer

 loop L1 ; repeat until ECX = 0

The following code calculates the sum of an array of 16-bit
integers.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 72

Your turn . . .

What changes would you make to the
program on the previous slide if you were
summing a doubleword array?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 73

Copying a String

.data
source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

.code
 mov esi,0 ; index register
 mov ecx,SIZEOF source ; loop counter
L1:
 mov al,source[esi] ; get char from source
 mov target[esi],al ; store it in the target
 inc esi ; move to next character
 loop L1 ; repeat for entire string

good use of
SIZEOF

The following code copies a string from source to target:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 74

Your turn . . .

Rewrite the program shown in the
previous slide, using indirect addressing
rather than indexed addressing.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 75

What's Next

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming

64-Bit Programming

• MOV instruction in 64-bit mode accepts operands of
8, 16, 32, or 64 bits

• When you move a 8, 16, or 32-bit constant to a 64-bit
register, the upper bits of the destination are cleared.

• When you move a memory operand into a 64-bit
register, the results vary:
• 32-bit move clears high bits in destination
• 8-bit or 16-bit move does not affect high bits in

destination

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 76

More 64-Bit Programming

• MOVSXD sign extends a 32-bit value into a 64-bit
destination register

• The OFFSET operator generates a 64-bit address
• LOOP uses the 64-bit RCX register as a counter
• RSI and RDI are the most common 64-bit index

registers for accessing arrays.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 77

Other 64-Bit Notes

• ADD and SUB affect the flags in the same way as in
32-bit mode

• You can use scale factors with indexed operands.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 78

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 79

Summary

• Data Transfer
• MOV – data transfer from source to destination
• MOVSX, MOVZX, XCHG

• Operand types
• direct, direct-offset, indirect, indexed

• Arithmetic
• INC, DEC, ADD, SUB, NEG
• Sign, Carry, Zero, Overflow flags

• Operators
• OFFSET, PTR, TYPE, LENGTHOF, SIZEOF, TYPEDEF

• JMP and LOOP – branching instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 80

46 69 6E 61 6C

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Data Transfer Instructions
	Operand Types
	Instruction Operand Notation
	Direct Memory Operands
	MOV Instruction
	Your turn . . .
	Zero Extension
	Sign Extension
	XCHG Instruction
	Direct-Offset Operands
	Direct-Offset Operands (cont)
	Your turn. . .
	Evaluate this . . .
	Evaluate this . . . (cont)
	What's Next
	Addition and Subtraction
	INC and DEC Instructions
	INC and DEC Examples
	Your turn...
	ADD and SUB Instructions
	ADD and SUB Examples
	NEG (negate) Instruction
	NEG Instruction and the Flags
	Implementing Arithmetic Expressions
	Your turn...
	Flags Affected by Arithmetic
	Concept Map
	Zero Flag (ZF)
	Sign Flag (SF)
	Signed and Unsigned Integers�A Hardware Viewpoint
	Overflow and Carry Flags�A Hardware Viewpoint
	Carry Flag (CF)
	Your turn . . .
	Overflow Flag (OF)
	A Rule of Thumb
	Your turn . . .
	What's Next
	Data-Related Operators and Directives
	OFFSET Operator
	OFFSET Examples
	Relating to C/C++
	PTR Operator
	Little Endian Order
	PTR Operator Examples
	PTR Operator (cont)
	Your turn . . .
	TYPE Operator
	LENGTHOF Operator
	SIZEOF Operator
	Spanning Multiple Lines (1 of 2)
	Spanning Multiple Lines (2 of 2)
	LABEL Directive
	What's Next
	Indirect Addressing
	Indirect Operands (1 of 2)
	Indirect Operands (2 of 2)
	Array Sum Example
	Indexed Operands
	Index Scaling
	Pointers
	What's Next
	JMP and LOOP Instructions
	JMP Instruction
	LOOP Instruction
	LOOP Example
	Your turn . . .
	Your turn . . .
	Nested Loop
	Summing an Integer Array
	Your turn . . .
	Copying a String
	Your turn . . .
	What's Next
	64-Bit Programming
	More 64-Bit Programming
	Other 64-Bit Notes
	Summary
	46 69 6E 61 6C

