
Assembly Language for x86 Processors
7th Edition

Chapter 7: Integer Arithmetic

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slides prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and Unpacked Decimal Arithmetic
• Packed Decimal Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Shift and Rotate Instructions

• Logical vs Arithmetic Shifts
• SHL Instruction
• SHR Instruction
• SAL and SAR Instructions
• ROL Instruction
• ROR Instruction
• RCL and RCR Instructions
• SHLD/SHRD Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Logical Shift

• A logical shift fills the newly created bit position with
zero:

CF

0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Arithmetic Shift

• An arithmetic shift fills the newly created bit position
with a copy of the number’s sign bit:

CF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

SHL Instruction

• The SHL (shift left) instruction performs a logical left
shift on the destination operand, filling the lowest bit
with 0.

• Operand types for SHL:
SHL reg,imm8
 SHL mem,imm8
 SHL reg,CL
 SHL mem,CL

(Same for all shift and
rotate instructions)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

Fast Multiplication

mov dl,5
shl dl,1

Shifting left 1 bit multiplies a number by 2

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 = 5

= 10

Before:

After:

mov dl,5
shl dl,2 ; DL = 20

Shifting left n bits multiplies the operand by 2n

For example, 5 * 22 = 20

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

SHR Instruction

• The SHR (shift right) instruction performs a logical
right shift on the destination operand. The highest bit
position is filled with a zero.

CF

0

mov dl,80
shr dl,1 ; DL = 40
shr dl,2 ; DL = 10

Shifting right n bits divides the operand by 2n

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

SAL and SAR Instructions

• SAL (shift arithmetic left) is identical to SHL.
• SAR (shift arithmetic right) performs a right arithmetic

shift on the destination operand.

CF

An arithmetic shift preserves the number's sign.

mov dl,-80
sar dl,1 ; DL = -40
sar dl,2 ; DL = -10

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Your turn . . .

mov al,6Bh
shr al,1 a.
shl al,3 b.
mov al,8Ch
sar al,1 c.
sar al,3 d.

Indicate the hexadecimal value of AL after each shift:

35h
A8h

C6h
F8h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

ROL Instruction

• ROL (rotate) shifts each bit to the left
• The highest bit is copied into both the Carry flag

and into the lowest bit
• No bits are lost

CF

mov al,11110000b
rol al,1 ; AL = 11100001b

mov dl,3Fh
rol dl,4 ; DL = F3h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

ROR Instruction

• ROR (rotate right) shifts each bit to the right
• The lowest bit is copied into both the Carry flag and

into the highest bit
• No bits are lost

CF

mov al,11110000b
ror al,1 ; AL = 01111000b

mov dl,3Fh
ror dl,4 ; DL = F3h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Your turn . . .

mov al,6Bh
ror al,1 a.
rol al,3 b.

Indicate the hexadecimal value of AL after each rotation:

B5h
ADh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

RCL Instruction

• RCL (rotate carry left) shifts each bit to the left
• Copies the Carry flag to the least significant bit
• Copies the most significant bit to the Carry flag

CF

clc ; CF = 0
mov bl,88h ; CF,BL = 0 10001000b
rcl bl,1 ; CF,BL = 1 00010000b
rcl bl,1 ; CF,BL = 0 00100001b

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

RCR Instruction

• RCR (rotate carry right) shifts each bit to the right
• Copies the Carry flag to the most significant bit
• Copies the least significant bit to the Carry flag

stc ; CF = 1
mov ah,10h ; CF,AH = 1 00010000b
rcr ah,1 ; CF,AH = 0 10001000b

CF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

Your turn . . .

stc
mov al,6Bh
rcr al,1 a.
rcl al,3 b.

Indicate the hexadecimal value of AL after each rotation:

B5h
AEh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

SHLD Instruction

• Shifts a destination operand a given number of bits to
the left

• The bit positions opened up by the shift are filled by
the most significant bits of the source operand

• The source operand is not affected
• Syntax:

 SHLD destination, source, count
• Operand types:

SHLD reg16/32, reg16/32, imm8/CL
SHLD mem16/32, reg16/32, imm8/CL

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

SHLD Example

Shift count of 1:
 mov al,11100000b
 mov bl,10011101b
 shld al,bl,1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

Another SHLD Example

.data
wval WORD 9BA6h
.code
mov ax,0AC36h
shld wval,ax,4

9BA6 AC36

BA6A AC36

wval AX

Shift wval 4 bits to the left and replace its lowest 4 bits with
the high 4 bits of AX:

Before:

After:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

SHRD Instruction

• Shifts a destination operand a given number of bits to
the right

• The bit positions opened up by the shift are filled by
the least significant bits of the source operand

• The source operand is not affected
• Syntax:

 SHRD destination, source, count
• Operand types:

SHRD reg16/32, reg16/32, imm8/CL
SHRD mem16/32, reg16/32, imm8/CL

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

SHRD Example

Shift count of 1:
 mov al,11000001b
 mov bl,00011101b
 shrd al,bl,1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

Another SHRD Example

mov ax,234Bh
mov dx,7654h
shrd ax,dx,4

Shift AX 4 bits to the right and replace its highest 4 bits with
the low 4 bits of DX:

Before:

After:

7654 234B

7654 4234

DX AX

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

Your turn . . .

mov ax,7C36h
mov dx,9FA6h
shld dx,ax,4 ; DX =
shrd dx,ax,8 ; DX =

Indicate the hexadecimal values of each destination
operand:

FA67h
36FAh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

What's Next

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and Unpacked Decimal Arithmetic
• Packed Decimal Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

Shift and Rotate Applications

• Shifting Multiple Doublewords
• Binary Multiplication
• Displaying Binary Bits
• Isolating a Bit String

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Shifting Multiple Doublewords

• Programs sometimes need to shift all bits within an
array, as one might when moving a bitmapped
graphic image from one screen location to another.

• The following shifts an array of 3 doublewords 1 bit to
the right (view complete source code):

.data
ArraySize = 3
array DWORD ArraySize DUP(99999999h) ; 1001 1001...
.code
mov esi,0
shr array[esi + 8],1 ; high dword
rcr array[esi + 4],1 ; middle dword, include Carry
rcr array[esi],1 ; low dword, include Carry

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Binary Multiplication

• mutiply 123 * 36

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Binary Multiplication

• We already know that SHL performs unsigned
multiplication efficiently when the multiplier is a power
of 2.

• You can factor any binary number into powers of 2.
• For example, to multiply EAX * 36, factor 36 into 32 + 4

and use the distributive property of multiplication to
carry out the operation:

EAX * 36
= EAX * (32 + 4)
= (EAX * 32)+(EAX * 4)

mov eax,123
mov ebx,eax
shl eax,5 ; mult by 25

shl ebx,2 ; mult by 22

add eax,ebx

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Your turn . . .

mov ax,2 ; test value

mov dx,ax
shl dx,4 ; AX * 16
push edx ; save for later
mov dx,ax
shl dx,3 ; AX * 8
shl ax,1 ; AX * 2
add ax,dx ; AX * 10
pop edx ; recall AX * 16
add ax,dx ; AX * 26

Multiply AX by 26, using shifting and addition instructions.
Hint: 26 = 16 + 8 + 2.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Displaying Binary Bits
Algorithm: Shift MSB into the Carry flag; If CF = 1, append a "1"
character to a string; otherwise, append a "0" character. Repeat
in a loop, 32 times.

.data
buffer BYTE 32 DUP(0),0
.code
 mov ecx,32
 mov esi,OFFSET buffer
L1: shl eax,1
 mov BYTE PTR [esi],'0'
 jnc L2
 mov BYTE PTR [esi],'1'
L2: inc esi
 loop L1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Isolating a Bit String

• The MS-DOS file date field packs the year, month,
and day into 16 bits:

DH DL

Year Month Day
9-15 5-8 0-4

Field:
Bit numbers:

01 000 10 1 10 1 010 10

mov ax,dx ; make a copy of DX
shr ax,5 ; shift right 5 bits
and al,00001111b ; clear bits 4-7
mov month,al ; save in month variable

Isolate the Month field:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

What's Next

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and Unpacked Decimal Arithmetic
• Packed Decimal Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Multiplication and Division Instructions

• MUL Instruction
• IMUL Instruction
• DIV Instruction
• Signed Integer Division
• CBW, CWD, CDQ Instructions
• IDIV Instruction
• Implementing Arithmetic Expressions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

MUL Instruction

• In 32-bit mode, MUL (unsigned multiply) instruction multiplies an
8-, 16-, or 32-bit operand by either AL, AX, or EAX.

• The instruction formats are:
MUL r/m8
MUL r/m16
MUL r/m32

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

64-Bit MUL Instruction

• In 64-bit mode, MUL (unsigned multiply) instruction multiplies a
64-bit operand by RAX, producing a 128-bit product.

• The instruction formats are:
MUL r/m64

Example:
mov rax,0FFFF0000FFFF0000h
mov rbx,2
mul rbx ; RDX:RAX = 0000000000000001FFFE0001FFFE0000

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

MUL Examples

100h * 2000h, using 16-bit operands:

.data
val1 WORD 2000h
val2 WORD 100h
.code
mov ax,val1
mul val2 ; DX:AX = 00200000h, CF=1

The Carry flag
indicates whether or
not the upper half of
the product contains
significant digits.

mov eax,12345h
mov ebx,1000h
mul ebx ; EDX:EAX = 0000000012345000h, CF=0

12345h * 1000h, using 32-bit operands:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Your turn . . .

mov ax,1234h
mov bx,100h
mul bx

What will be the hexadecimal values of DX, AX, and the Carry
flag after the following instructions execute?

DX = 0012h, AX = 3400h, CF = 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

Your turn . . .

mov eax,00128765h
mov ecx,10000h
mul ecx

What will be the hexadecimal values of EDX, EAX, and the
Carry flag after the following instructions execute?

EDX = 00000012h, EAX = 87650000h, CF = 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

IMUL Instruction

• IMUL (signed integer multiply) multiplies an 8-, 16-,
or 32-bit signed operand by either AL, AX, or EAX

• Preserves the sign of the product by sign-extending it
into the upper half of the destination register

Example: multiply 48 * 4, using 8-bit operands:

mov al,48
mov bl,4
imul bl ; AX = 00C0h, OF=1

OF=1 because AH is not a sign extension of AL.

Using IMUL in 64-Bit Mode

• You can use 64-bit operands. In the two-operand
format, a 64-bit register or memory operand is
multiplied against RDX
• 128-bit product produced in RDX:RAX

• The three-operand format produces a 64-bit product
in RAX

.data
multiplicand QWORD -16
.code
imul rax, multiplicand, 4 ; RAX = FFFFFFFFFFFFFFC0 (-64)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

IMUL Examples

Multiply 4,823,424 * −423:

mov eax,4823424
mov ebx,-423
imul ebx ; EDX:EAX = FFFFFFFF86635D80h, OF=0

OF=0 because EDX is a sign extension of EAX.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

Your turn . . .

mov ax,8760h
mov bx,100h
imul bx

What will be the hexadecimal values of DX, AX, and the Carry
flag after the following instructions execute?

DX = FF87h, AX = 6000h, OF = 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

DIV Instruction

• The DIV (unsigned divide) instruction performs 8-bit,
16-bit, and 32-bit division on unsigned integers

• A single operand is supplied (register or memory
operand), which is assumed to be the divisor

• Instruction formats:
DIV reg/mem8
DIV reg/mem16
DIV reg/mem32

Default Operands:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

DIV Examples

Divide 8003h by 100h, using 16-bit operands:

mov dx,0 ; clear dividend, high
mov ax,8003h ; dividend, low
mov cx,100h ; divisor
div cx ; AX = 0080h, DX = 3

Same division, using 32-bit operands:

mov edx,0 ; clear dividend, high
mov eax,8003h ; dividend, low
mov ecx,100h ; divisor
div ecx ; EAX = 00000080h, DX = 3

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

64-Bit DIV Example

Divide 000001080000000033300020h by
00010000h:

.data
dividend_hi QWORD 00000108h
dividend_lo QWORD 33300020h
divisor QWORD 00010000h

.code
mov rdx, dividend_hi
mov rax, dividend_lo
div divisor ; RAX = quotient
 ; RDX = remainder

quotient: 0108000000003330h
remainder: 0000000000000020h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Your turn . . .

mov dx,0087h
mov ax,6000h
mov bx,100h
div bx

What will be the hexadecimal values of DX and AX
after the following instructions execute? Or, if divide
overflow occurs, you can indicate that as your answer:

DX = 0000h, AX = 8760h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Your turn . . .

mov dx,0087h
mov ax,6002h
mov bx,10h
div bx

What will be the hexadecimal values of DX and AX
after the following instructions execute? Or, if divide
overflow occurs, you can indicate that as your answer:

Divide Overflow

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Signed Integer Division (IDIV)

• Signed integers must be sign-extended before
division takes place
• fill high byte/word/doubleword with a copy of the low

byte/word/doubleword's sign bit
• For example, the high byte contains a copy of the

sign bit from the low byte:

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 11 1 1 1 1 1 1 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

CBW, CWD, CDQ Instructions

• The CBW, CWD, and CDQ instructions provide
important sign-extension operations:
• CBW (convert byte to word) extends AL into AH
• CWD (convert word to doubleword) extends AX into DX
• CDQ (convert doubleword to quadword) extends EAX into EDX

• Example:
.data
dwordVal SDWORD -101 ; FFFFFF9Bh
.code
mov eax,dwordVal
cdq ; EDX:EAX = FFFFFFFFFFFFFF9Bh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

IDIV Instruction

• IDIV (signed divide) performs signed integer division
• Same syntax and operands as DIV instruction

Example: 8-bit division of –48 by 5

mov al,-48
cbw ; extend AL into AH
mov bl,5
idiv bl ; AL = -9, AH = -3

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

IDIV Examples

Example: 32-bit division of –48 by 5

mov eax,-48
cdq ; extend EAX into EDX
mov ebx,5
idiv ebx ; EAX = -9, EDX = -3

Example: 16-bit division of –48 by 5

mov ax,-48
cwd ; extend AX into DX
mov bx,5
idiv bx ; AX = -9, DX = -3

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Your turn . . .

mov ax,0FDFFh ; -513
cwd
mov bx,100h
idiv bx

What will be the hexadecimal values of DX and AX
after the following instructions execute? Or, if divide
overflow occurs, you can indicate that as your answer:

DX = FFFFh (−1), AX = FFFEh (−2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Unsigned Arithmetic Expressions
• Some good reasons to learn how to implement

integer expressions:
• Learn how do compilers do it
• Test your understanding of MUL, IMUL, DIV, IDIV
• Check for overflow (Carry and Overflow flags)

Example: var4 = (var1 + var2) * var3

; Assume unsigned operands
mov eax,var1
add eax,var2 ; EAX = var1 + var2
mul var3 ; EAX = EAX * var3
jc TooBig ; check for carry
mov var4,eax ; save product

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Signed Arithmetic Expressions (1 of 2)

Example: eax = (-var1 * var2) + var3
mov eax,var1
neg eax
imul var2
jo TooBig ; check for overflow
add eax,var3
jo TooBig ; check for overflow

Example: var4 = (var1 * 5) / (var2 – 3)

mov eax,var1 ; left side
mov ebx,5
imul ebx ; EDX:EAX = product
mov ebx,var2 ; right side
sub ebx,3
idiv ebx ; EAX = quotient
mov var4,eax

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

Signed Arithmetic Expressions (2 of 2)

Example: var4 = (var1 * -5) / (-var2 % var3);

mov eax,var2 ; begin right side
neg eax
cdq ; sign-extend dividend
idiv var3 ; EDX = remainder
mov ebx,edx ; EBX = right side
mov eax,-5 ; begin left side
imul var1 ; EDX:EAX = left side
idiv ebx ; final division
mov var4,eax ; quotient

Sometimes it's easiest to calculate the right-hand term of an
expression first.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

Your turn . . .

mov eax,20
imul ebx
idiv ecx

Implement the following expression using signed 32-bit
integers:
 eax = (ebx * 20) / ecx

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

Your turn . . .

push edx
push eax ; EAX needed later
mov eax,ecx
imul edx ; left side: EDX:EAX
pop ebx ; saved value of EAX
idiv ebx ; EAX = quotient
pop edx ; restore EDX, ECX

Implement the following expression using signed 32-bit
integers. Save and restore ECX and EDX:
 eax = (ecx * edx) / eax

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

Your turn . . .

mov eax,var1
mov edx,var2
neg edx
imul edx ; left side: EDX:EAX
mov ecx,var3
sub ecx,ebx
idiv ecx ; EAX = quotient
mov var3,eax

Implement the following expression using signed 32-bit
integers. Do not modify any variables other than var3:
 var3 = (var1 * -var2) / (var3 – ebx)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

What's Next

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and UnPacked Decimal Arithmetic
• Packed Decimal Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

Extended Addition and Subtraction

• ADC Instruction
• Extended Precision Addition
• SBB Instruction
• Extended Precision Subtraction

The instructions in this section do not
apply to 64-bit mode programming.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

Extended Precision Addition

• Adding two operands that are longer than the
computer's word size (32 bits).
• Virtually no limit to the size of the operands

• The arithmetic must be performed in steps
• The Carry value from each step is passed on to the

next step.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

ADC Instruction

• ADC (add with carry) instruction adds both a source
operand and the contents of the Carry flag to a
destination operand.

• Operands are binary values
• Same syntax as ADD, SUB, etc.

• Example
• Add two 32-bit integers (FFFFFFFFh + FFFFFFFFh),

producing a 64-bit sum in EDX:EAX:

mov edx,0
mov eax,0FFFFFFFFh
add eax,0FFFFFFFFh
adc edx,0 ;EDX:EAX = 00000001FFFFFFFEh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

Extended Addition Example

• Task: Add 1 to EDX:EAX
• Starting value of EDX:EAX: 00000000FFFFFFFFh
• Add the lower 32 bits first, setting the Carry flag.
• Add the upper 32 bits, and include the Carry flag.

mov edx,0 ; set upper half
mov eax,0FFFFFFFFh ; set lower half
add eax,1 ; add lower half
adc edx,0 ; add upper half

EDX:EAX = 00000001 00000000

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

SBB Instruction

• The SBB (subtract with borrow) instruction
subtracts both a source operand and the value of
the Carry flag from a destination operand.

• Operand syntax:
• Same as for the ADC instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

Extended Subtraction Example

• Task: Subtract 1 from EDX:EAX
• Starting value of EDX:EAX: 0000000100000000h
• Subtract the lower 32 bits first, setting the Carry flag.
• Subtract the upper 32 bits, and include the Carry flag.

mov edx,1 ; set upper half
mov eax,0 ; set lower half
sub eax,1 ; subtract lower half
sbb edx,0 ; subtract upper half

EDX:EAX = 00000000 FFFFFFFF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 66

What's Next

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and UnPacked Decimal Arithmetic
• Packed Decimal Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

ASCII and Packed Decimal Arithmetic

• Binary Coded Decimal
• ASCII Decimal
• AAA Instruction
• AAS Instruction
• AAM Instruction
• AAD Instruction
• Packed Decimal Integers
• DAA Instruction
• DAS Instruction

The instructions in this
section do not apply to 64-
bit mode programming.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 68

Binary-Coded Decimal

• Binary-coded decimal (BCD) integers use 4 binary
bits to represent each decimal digit

• A number using unpacked BCD representation stores
a decimal digit in the lower four bits of each byte
• For example, 5,678 is stored as the following sequence

of hexadecimal bytes:

05 06 07 08

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 69

ASCII Decimal

• A number using ASCII Decimal representation stores
a single ASCII digit in each byte
• For example, 5,678 is stored as the following sequence

of hexadecimal bytes:

35 36 37 38

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 70

AAA Instruction

• The AAA (ASCII adjust after addition) instruction
adjusts the binary result of an ADD or ADC
instruction. It makes the result in AL consistent with
ASCII decimal representation.
• The Carry value, if any ends up in AH

• Example: Add '8' and '2'

mov ah,0
mov al,'8' ; AX = 0038h
add al,'2' ; AX = 006Ah
aaa ; AX = 0100h (adjust result)
or ax,3030h ; AX = 3130h = '10'

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 71

AAS Instruction

• The AAS (ASCII adjust after subtraction) instruction
adjusts the binary result of an SUB or SBB instruction.
It makes the result in AL consistent with ASCII decimal
representation.
• It places the Carry value, if any, in AH

• Example: Subtract '9' from '8'

mov ah,0
mov al,'8' ; AX = 0038h
sub al,'9' ; AX = 00FFh
aas ; AX = FF09h, CF=1
or al,30h ; AL = '9'

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 72

AAM Instruction

• The AAM (ASCII adjust after multiplication) instruction
adjusts the binary result of a MUL instruction. The
multiplication must have been performed on
unpacked BCD numbers.

mov bl,05h ; first operand
mov al,06h ; second operand
mul bl ; AX = 001Eh
aam ; AX = 0300h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 73

AAD Instruction

• The AAD (ASCII adjust before division) instruction
adjusts the unpacked BCD dividend in AX before a
division operation

.data
quotient BYTE ?
remainder BYTE ?
.code
mov ax,0307h ; dividend
aad ; AX = 0025h
mov bl,5 ; divisor
div bl ; AX = 0207h
mov quotient,al
mov remainder,ah

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 74

What's Next

• Shift and Rotate Instructions
• Shift and Rotate Applications
• Multiplication and Division Instructions
• Extended Addition and Subtraction
• ASCII and UnPacked Decimal Arithmetic
• Packed Decimal Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 75

Packed Decimal Arithmetic

• Packed decimal integers store two decimal digits per
byte
• For example, 12,345,678 can be stored as the

following sequence of hexadecimal bytes:

12 34 56 78

Packed decimal is also known as packed BCD.

Good for financial values – extended precision possible,
without rounding errors.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 76

DAA Instruction

• The DAA (decimal adjust after addition) instruction
converts the binary result of an ADD or ADC
operation to packed decimal format.
• The value to be adjusted must be in AL
• If the lower digit is adjusted, the Auxiliary Carry flag is

set.
• If the upper digit is adjusted, the Carry flag is set.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 77

DAA Logic

If (AL(lo) > 9) or (AuxCarry = 1)
 AL = AL + 6
 AuxCarry = 1
Else
 AuxCarry = 0
Endif

If (AL(hi) > 9) or Carry = 1
 AL = AL + 60h
 Carry = 1
Else
 Carry = 0
Endif

If AL = AL + 6 sets the
Carry flag, its value is
used when evaluating
AL(hi).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 78

DAA Examples

• Example: calculate BCD 35 + 48

mov al,35h
add al,48h ; AL = 7Dh
daa ; AL = 83h, CF = 0

• Example: calculate BCD 35 + 65

mov al,35h
add al,65h ; AL = 9Ah
daa ; AL = 00h, CF = 1

• Example: calculate BCD 69 + 29

mov al,69h
add al,29h ; AL = 92h
daa ; AL = 98h, CF = 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 79

Your turn . . .

• A temporary malfunction in your computer's processor has
disabled the DAA instruction. Write a procedure in assembly
language that performs the same actions as DAA.

• Test your procedure using the values from the previous slide.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 80

DAS Instruction

• The DAS (decimal adjust after subtraction) instruction
converts the binary result of a SUB or SBB operation
to packed decimal format.

• The value must be in AL
• Example: subtract BCD 48 from 85

mov al,48h
sub al,35h ; AL = 13h
das ; AL = 13h CF = 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 81

DAS Logic

If (AL(lo) > 9) OR (AuxCarry = 1)
 AL = AL − 6;
 AuxCarry = 1;
Else

AuxCarry = 0;
Endif

If (AL > 9FH) or (Carry = 1)
 AL = AL − 60h;
 Carry = 1;
Else
 Carry = 0;
Endif

If AL = AL − 6 sets the
Carry flag, its value is
used when evaluating AL
in the second IF
statement.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 82

DAS Examples (1 of 2)

• Example: subtract BCD 48 – 35

mov al,48h
sub al,35h ; AL = 13h
das ; AL = 13h CF = 0

• Example: subtract BCD 62 – 35

mov al,62h
sub al,35h ; AL = 2Dh, CF = 0
das ; AL = 27h, CF = 0

• Example: subtract BCD 32 – 29

mov al,32h
add al,29h ; AL = 09h, CF = 0
daa ; AL = 03h, CF = 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 83

DAS Examples (2 of 2)

• Example: subtract BCD 32 – 39

mov al,32h
sub al,39h ; AL = F9h, CF = 1
das ; AL = 93h, CF = 1

Steps:
AL = F9h
CF = 1, so subtract 6 from F9h
AL = F3h
F3h > 9Fh, so subtract 60h from F3h
AL = 93h, CF = 1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 84

Your turn . . .

• A temporary malfunction in your computer's processor has
disabled the DAS instruction. Write a procedure in assembly
language that performs the same actions as DAS.

• Test your procedure using the values from the previous two
slides.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 85

Summary

• Shift and rotate instructions are some of the best
tools of assembly language
• finer control than in high-level languages
• SHL, SHR, SAR, ROL, ROR, RCL, RCR

• MUL and DIV – integer operations
• close relatives of SHL and SHR
• CBW, CDQ, CWD: preparation for division

• 32-bit Mode only:
• Extended precision arithmetic: ADC, SBB
• ASCII decimal operations (AAA, AAS, AAM, AAD)
• Packed decimal operations (DAA, DAS)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 86

55 74 67 61 6E 67 65 6E

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Shift and Rotate Instructions
	Logical Shift
	Arithmetic Shift
	SHL Instruction
	Fast Multiplication
	SHR Instruction
	SAL and SAR Instructions
	Your turn . . .
	ROL Instruction
	ROR Instruction
	Your turn . . .
	RCL Instruction
	RCR Instruction
	Your turn . . .
	SHLD Instruction
	SHLD Example
	Another SHLD Example
	SHRD Instruction
	SHRD Example
	Another SHRD Example
	Your turn . . .
	What's Next
	Shift and Rotate Applications
	Shifting Multiple Doublewords
	Binary Multiplication
	Binary Multiplication
	Your turn . . .
	Displaying Binary Bits
	Isolating a Bit String
	What's Next
	Multiplication and Division Instructions
	MUL Instruction
	64-Bit MUL Instruction
	MUL Examples
	Your turn . . .
	Your turn . . .
	IMUL Instruction
	Using IMUL in 64-Bit Mode
	IMUL Examples
	Your turn . . .
	DIV Instruction
	DIV Examples
	64-Bit DIV Example
	Your turn . . .
	Your turn . . .
	Signed Integer Division (IDIV)
	CBW, CWD, CDQ Instructions
	IDIV Instruction
	IDIV Examples
	Your turn . . .
	Unsigned Arithmetic Expressions
	Signed Arithmetic Expressions (1 of 2)
	Signed Arithmetic Expressions (2 of 2)
	Your turn . . .
	Your turn . . .
	Your turn . . .
	What's Next
	Extended Addition and Subtraction
	Extended Precision Addition
	ADC Instruction
	Extended Addition Example
	SBB Instruction
	Extended Subtraction Example
	What's Next
	ASCII and Packed Decimal Arithmetic
	Binary-Coded Decimal
	ASCII Decimal
	AAA Instruction
	AAS Instruction
	AAM Instruction
	AAD Instruction
	What's Next
	Packed Decimal Arithmetic
	DAA Instruction
	DAA Logic
	DAA Examples
	Your turn . . .
	DAS Instruction
	DAS Logic
	DAS Examples (1 of 2)
	DAS Examples (2 of 2)
	Your turn . . .
	Summary
	55 74 67 61 6E 67 65 6E

