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Chapter Overview 

• Boolean and Comparison Instructions 
• Conditional Jumps 
• Conditional Loop Instructions 
• Conditional Structures 
• Application: Finite-State Machines 
• Conditional Control Flow Directives 
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Boolean and Comparison Instructions 

• CPU Status Flags 
• AND Instruction 
• OR Instruction 
• XOR Instruction 
• NOT Instruction 
• Applications 
• TEST Instruction  
• CMP Instruction 
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Status Flags - Review 

• The Zero flag is set when the result of an operation equals zero. 
• The Carry flag is set when an instruction generates a result that is 

too large (or too small) for the destination operand. 
• The Sign flag is set if the destination operand is negative, and it is 

clear if the destination operand is positive. 
• The Overflow flag is set when an instruction generates an invalid 

signed result (bit 7 carry is XORed with bit 6 Carry). 
• The Parity flag is set when an instruction generates an even 

number of 1 bits in the low byte of the destination operand. 
• The Auxiliary Carry flag is set when an operation produces a carry 

out from bit 3 to bit 4 
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AND Instruction 

• Performs a Boolean AND operation between each 
pair of matching bits in two operands 

• Syntax: 
AND destination, source 

(same operand types as MOV) 

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

AND 
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OR Instruction 

• Performs a Boolean OR operation between each pair 
of matching bits in two operands 

• Syntax: 
OR destination, source 

OR 

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged
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XOR Instruction 

• Performs a Boolean exclusive-OR operation between 
each pair of matching bits in two operands 

• Syntax: 
XOR destination, source 

XOR 

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 0

XOR

invertedunchanged

XOR is a useful way to toggle (invert) the bits in an operand. 
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NOT Instruction 

• Performs a Boolean NOT operation on a single 
destination operand 

• Syntax: 
NOT destination 

NOT 

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted
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Bit-Mapped Sets 

• Binary bits indicate set membership 
• Efficient use of storage 
• Also known as bit vectors 
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Bit-Mapped Set Operations 

• Set Complement 
mov eax,SetX 
not eax 
 

• Set Intersection 
mov eax,setX 
and eax,setY 
 

• Set Union 
mov eax,setX 
or  eax,setY 
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Applications  (1 of 5) 

mov al,'a' ; AL = 01100001b 
and al,11011111b ; AL = 01000001b 

• Task: Convert the character in AL to upper case. 

• Solution: Use the AND instruction to clear bit 5. 
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Applications  (2 of 5) 

mov al,6 ; AL = 00000110b 
or  al,00110000b ; AL = 00110110b 

• Task: Convert a binary decimal byte into its equivalent 
ASCII decimal digit. 

• Solution: Use the OR instruction to set bits 4 and 5. 

The ASCII digit '6' = 00110110b 
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Applications  (3 of 5) 

mov ax,40h ; BIOS segment 
mov ds,ax 
mov bx,17h ; keyboard flag byte 
or BYTE PTR [bx],01000000b ; CapsLock on 

• Task: Turn on the keyboard CapsLock key 

• Solution: Use the OR instruction to set bit 6 in the keyboard 
flag byte at 0040:0017h in the BIOS data area. 

This code only runs in Real-address mode, and it does not 
work under Windows NT, 2000, or XP. 
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Applications  (4 of 5) 

mov ax,wordVal 
and ax,1 ; low bit set? 
jz  EvenValue ; jump if Zero flag set 

• Task: Jump to a label if an integer is even. 

• Solution: AND the lowest bit with a 1. If the result is Zero, 
the number was even. 

JZ (jump if Zero) is covered in Section 6.3. 

Your turn: Write code that jumps to a label if an integer is 
negative. 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15 

Applications  (5 of 5) 

or  al,al 
jnz IsNotZero ; jump if not zero 

• Task: Jump to a label if the value in AL is not zero. 

• Solution: OR the byte with itself, then use the JNZ (jump 
if not zero) instruction. 

ORing any number with itself does not change its value. 
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TEST Instruction 

• Performs a nondestructive AND operation between each pair of 
matching bits in two operands 

• No operands are modified, but the Zero flag is affected. 
• Example: jump to a label if either bit 0 or bit 1 in AL is set. 

test al,00000011b 
jnz  ValueFound 

• Example: jump to a label if neither bit 0 nor bit 1 in AL is set. 

test al,00000011b 
jz   ValueNotFound 
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CMP Instruction  (1 of 3) 

• Compares the destination operand to the source operand 
• Nondestructive subtraction of source from destination (destination 

operand is not changed) 
• Syntax: CMP destination, source 
• Example: destination == source 

mov al,5 
cmp al,5 ; Zero flag set 

• Example: destination < source 

mov al,4 
cmp al,5 ; Carry flag set 
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CMP Instruction  (2 of 3) 

• Example: destination > source 

mov al,6 
cmp al,5 ; ZF = 0, CF = 0 

(both the Zero and Carry flags are clear) 
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CMP Instruction  (3 of 3) 

• Example: destination > source 

mov al,5 
cmp al,-2 ; Sign flag == Overflow flag 

The comparisons shown here are performed with signed 
integers. 

• Example: destination < source 

mov al,-1 
cmp al,5 ; Sign flag != Overflow flag 



Boolean Instructions in 64-Bit Mode 

• 64-bit boolean instructions, for the most part, work 
the same as 32-bit instructions 

• If the source operand is a constant whose size is less 
than 32 bits and the destination is the lower part of a 
64-bit register or memory operand, all bits in the 
destination operand are affected 

• When the source is a 32-bit constant or register, only 
the lower 32 bits of the destination operand are 
affected 
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What's Next 

• Boolean and Comparison Instructions 
• Conditional Jumps 
• Conditional Loop Instructions 
• Conditional Structures 
• Application: Finite-State Machines 
• Conditional Control Flow Directives 
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Conditional Jumps 

• Jumps Based On . . . 
• Specific flags 
• Equality 
• Unsigned comparisons 
• Signed Comparisons 

• Applications 
• Encrypting a String 
• Bit Test (BT) Instruction 
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Jcond Instruction 

• A conditional jump instruction branches to a label 
when specific register or flag conditions are met 
 

• Specific jumps: 
JB, JC - jump to a label if the Carry flag is set 
JE, JZ - jump to a label if the Zero flag is set 
JS - jump to a label if the Sign flag is set 
JNE, JNZ - jump to a label if the Zero flag is clear 
JECXZ - jump to a label if ECX = 0 
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Jcond Ranges 

• Prior to the 386: 
• jump must be within –128 to +127 bytes from current 

location counter 
• x86 processors: 

• 32-bit offset permits jump anywhere in memory 
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Jumps Based on Specific Flags 
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Jumps Based on Equality 
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Jumps Based on Unsigned Comparisons 
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Jumps Based on Signed Comparisons 
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Applications  (1 of 5) 

cmp eax,ebx 
ja  Larger 

• Task: Jump to a label if unsigned EAX is greater than EBX 

• Solution: Use CMP, followed by JA 

cmp eax,ebx 
jg  Greater 

• Task: Jump to a label if signed EAX is greater than EBX 

• Solution: Use CMP, followed by JG 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30 

Applications  (2 of 5) 

cmp eax,Val1 
jbe L1 ; below or equal 

• Jump to label L1 if unsigned EAX is less than or equal to Val1 

cmp eax,Val1 
jle L1 

• Jump to label L1 if signed EAX is less than or equal to Val1 
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Applications  (3 of 5) 

mov Large,bx 
cmp ax,bx 
jna Next 
mov Large,ax 

Next: 

• Compare unsigned AX to BX, and copy the larger of the two 
into a variable named Large 

mov Small,ax 
cmp bx,ax 
jnl Next 
mov Small,bx 

Next: 

• Compare signed AX to BX, and copy the smaller of the two 
into a variable named Small 
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Applications  (4 of 5) 

cmp WORD PTR [esi],0 
je  L1 

• Jump to label L1 if the memory word pointed to by ESI equals 
Zero 

test DWORD PTR [edi],1 
jz   L2 

• Jump to label L2 if the doubleword in memory pointed to by 
EDI is even 
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Applications  (5 of 5) 

and al,00001011b ; clear unwanted bits 
cmp al,00001011b ; check remaining bits 
je  L1 ; all set? jump to L1 
 

• Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set. 

• Solution: Clear all bits except bits 0, 1,and 3. Then 
compare the result with 00001011 binary. 
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Your turn . . . 

• Write code that jumps to label L1 if either bit 4, 5, or 6 
is set in the BL register. 

• Write code that jumps to label L1 if bits 4, 5, and 6 
are all set in the BL register. 

• Write code that jumps to label L2 if AL has even 
parity. 

• Write code that jumps to label L3 if EAX is negative. 
• Write code that jumps to label L4 if the expression 

(EBX – ECX) is greater than zero. 
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Encrypting a String 

KEY = 239 ; can be any byte value 
BUFMAX = 128 
.data 
buffer  BYTE BUFMAX+1 DUP(0) 
bufSize DWORD BUFMAX 
 
.code 

mov ecx,bufSize ; loop counter 
mov esi,0 ; index 0 in buffer 

L1: 
xor buffer[esi],KEY ; translate a byte 
inc esi ; point to next byte 
loop L1 

The following loop uses the XOR instruction to transform every 
character in a string into a new value. 
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String Encryption Program 

• Tasks: 
• Input a message (string) from the user 
• Encrypt the message 
• Display the encrypted message 
• Decrypt the message 
• Display the decrypted message 

View the Encrypt.asm program's source code. Sample output: 

Enter the plain text: Attack at dawn. 

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs 

Decrypted: Attack at dawn. 
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BT (Bit Test) Instruction 

• Copies bit n from an operand into the Carry flag 
• Syntax: BT bitBase, n 

• bitBase may be r/m16 or r/m32 
• n may be r16, r32, or imm8 

• Example: jump to label L1 if bit 9 is set in the AX 
register: 

bt AX,9 ; CF = bit 9 
jc L1 ; jump if Carry 
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What's Next 

• Boolean and Comparison Instructions 
• Conditional Jumps 
• Conditional Loop Instructions 
• Conditional Structures 
• Application: Finite-State Machines 
• Conditional Control Flow Directives 
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Conditional Loop Instructions 

• LOOPZ and LOOPE 
• LOOPNZ and LOOPNE 
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LOOPZ and LOOPE 

• Syntax:  
 LOOPE destination 
 LOOPZ destination 

• Logic:  
• ECX ← ECX – 1 
• if ECX > 0 and ZF=1, jump to destination 

• Useful when scanning an array for the first element 
that does not match a given value. 

In 32-bit mode, ECX is the loop counter register. In 16-bit real-
address mode, CX is the counter, and in 64-bit mode, RCX is the 
counter. 
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LOOPNZ and LOOPNE 

• LOOPNZ (LOOPNE) is a conditional loop instruction 
• Syntax:  
  LOOPNZ destination 
  LOOPNE destination 
• Logic:  

• ECX ← ECX – 1;  
• if ECX > 0 and ZF=0, jump to destination 

• Useful when scanning an array for the first element 
that matches a given value. 
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LOOPNZ Example 

.data 
array SWORD -3,-6,-1,-10,10,30,40,4 
sentinel SWORD 0 
.code 

mov esi,OFFSET array 
mov ecx,LENGTHOF array 

next: 
test WORD PTR [esi],8000h ; test sign bit 
pushfd ; push flags on stack 
add esi,TYPE array 
popfd ; pop flags from stack 
loopnz next ; continue loop 
jnz quit ; none found 
sub esi,TYPE array ; ESI points to value 

quit: 
 

The following code finds the first positive value in an array: 
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Your turn . . . 

.data 
array SWORD 50 DUP(?) 
sentinel SWORD 0FFFFh 
.code 

mov esi,OFFSET array 
mov ecx,LENGTHOF array 

L1: cmp WORD PTR [esi],0 ; check for zero 
 
 
 (fill in your code here) 
 
 
quit: 

Locate the first nonzero value in the array. If none is found, let 
ESI point to the sentinel value: 
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. . . (solution) 

.data 
array SWORD 50 DUP(?) 
sentinel SWORD 0FFFFh 
.code 

mov esi,OFFSET array 
mov ecx,LENGTHOF array 

L1: cmp WORD PTR [esi],0 ; check for zero 
pushfd ; push flags on stack 
add esi,TYPE array 
popfd ; pop flags from stack 
loope L1 ; continue loop 
jz quit ; none found 
sub esi,TYPE array ; ESI points to value 

quit: 
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What's Next 

• Boolean and Comparison Instructions 
• Conditional Jumps 
• Conditional Loop Instructions 
• Conditional Structures 
• Application: Finite-State Machines 
• Conditional Control Flow Directives 
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Conditional Structures 

• Block-Structured IF Statements 

• Compound Expressions with AND 

• Compound Expressions with OR 

• WHILE Loops 

• Table-Driven Selection 
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Block-Structured IF Statements 

Assembly language programmers can easily translate logical 
statements written in C++/Java into assembly language. For 
example: 

mov eax,op1 
cmp eax,op2 
jne L1 
mov X,1 
jmp L2 

L1: mov X,2 
L2: 
 

if( op1 == op2 ) 
  X = 1; 
else 
  X = 2; 
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Your turn . . . 

Implement the following pseudocode in assembly 
language. All values are unsigned: 

cmp ebx,ecx 
ja  next 
mov eax,5 
mov edx,6 

next:  

if( ebx <= ecx ) 
{ 
  eax = 5; 
  edx = 6; 
} 
 

(There are multiple correct solutions to this problem.) 
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Your turn . . . 

Implement the following pseudocode in assembly 
language. All values are 32-bit signed integers: 

mov eax,var1 
cmp eax,var2 
jle L1 
mov var3,6 
mov var4,7 
jmp L2 

L1: mov var3,10 
L2: 

if( var1 <= var2 ) 
  var3 = 10; 
else 
{ 
  var3 = 6; 
  var4 = 7; 
} 

(There are multiple correct solutions to this problem.) 
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Compound Expression with AND  (1 of 3) 

• When implementing the logical AND operator, consider that HLLs 
use short-circuit evaluation 

• In the following example, if the first expression is false, the second 
expression is skipped: 

if (al > bl) AND (bl > cl) 
  X = 1; 
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Compound Expression with AND  (2 of 3) 

 cmp al,bl ; first expression... 
 ja  L1 
 jmp next 
L1: 
 cmp bl,cl ; second expression... 
 ja  L2 
 jmp next 
L2:  ; both are true 
 mov X,1 ; set X to 1 
next: 

if (al > bl) AND (bl > cl) 
  X = 1; 
 

This is one possible implementation . . . 
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Compound Expression with AND  (3 of 3) 

 cmp al,bl ; first expression... 
 jbe next ; quit if false 
 cmp bl,cl ; second expression... 
 jbe next ; quit if false 
 mov X,1 ; both are true 
next: 

if (al > bl) AND (bl > cl) 
  X = 1; 
 

But the following implementation uses  29% less code by 
reversing the first relational operator. We allow the program to 
"fall through" to the second expression: 
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Your turn . . . 

Implement the following pseudocode in assembly 
language. All values are unsigned: 

cmp ebx,ecx 
ja  next 
cmp ecx,edx 
jbe next 
mov eax,5 
mov edx,6 

next:  

if( ebx <= ecx  
 && ecx > edx ) 
{ 
  eax = 5; 
  edx = 6; 
} 
 

(There are multiple correct solutions to this problem.) 
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Compound Expression with OR  (1 of 2) 

• When implementing the logical OR operator, consider 
that HLLs use short-circuit evaluation 

• In the following example, if the first expression is true, 
the second expression is skipped: 

if (al > bl) OR (bl > cl) 
  X = 1; 
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Compound Expression with OR  (2 of 2) 

 cmp al,bl ; is AL > BL? 
 ja  L1 ; yes 
 cmp bl,cl ; no: is BL > CL? 
 jbe next ; no: skip next statement 
L1: mov X,1 ; set X to 1 
next: 

We can use "fall-through" logic to keep the code as short as 
possible: 

if (al > bl) OR (bl > cl) 
  X = 1; 
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WHILE Loops 

while( eax < ebx) 
 eax = eax + 1; 

A WHILE loop is really an IF statement followed by the body 
of the loop, followed by an unconditional jump to the top of 
the loop. Consider the following example: 

top: cmp eax,ebx ; check loop condition 
 jae next ; false? exit loop 
 inc eax ; body of loop 
 jmp top ; repeat the loop 
next: 

This is a possible implementation: 
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Your turn . . . 

top: cmp ebx,val1 ; check loop condition 
 ja  next ; false? exit loop 
 add ebx,5 ; body of loop 
 dec val1 
 jmp top ; repeat the loop 
next: 

while( ebx <= val1) 
{ 
 ebx = ebx + 5; 
 val1 = val1 - 1 
} 

Implement the following loop, using unsigned 32-bit integers: 
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Table-Driven Selection  (1 of 4) 

• Table-driven selection uses a table lookup to 
replace a multiway selection structure 

• Create a table containing lookup values and the 
offsets of labels or procedures 

• Use a loop to search the table 
• Suited to a large number of comparisons 
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Table-Driven Selection  (2 of 4) 

.data 
CaseTable BYTE 'A' ; lookup value 
 DWORD Process_A ; address of procedure 
 EntrySize = ($ - CaseTable) 
 BYTE 'B' 
 DWORD Process_B 
 BYTE 'C' 
 DWORD Process_C 
 BYTE 'D' 
 DWORD Process_D 
 
NumberOfEntries = ($ - CaseTable) / EntrySize 

Step 1: create a table containing lookup values and procedure 
offsets: 
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Table-Driven Selection  (3 of 4) 

Table of Procedure Offsets: 
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Table-Driven Selection  (4 of 4) 

 mov ebx,OFFSET CaseTable ; point EBX to the table 
 mov ecx,NumberOfEntries ; loop counter 
 
L1: cmp al,[ebx] ; match found? 
 jne L2 ; no: continue 
 call NEAR PTR [ebx + 1] ; yes: call the procedure 
 call WriteString ; display message 
 call Crlf 
 jmp L3 ; and exit the loop 
L2: add ebx,EntrySize ; point to next entry 
 loop L1 ; repeat until ECX = 0 
 
L3: 

Step 2: Use a loop to search the table. When a match is found, 
call the procedure offset stored in the current table entry: 

required for 
procedure pointers 
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What's Next 

• Boolean and Comparison Instructions 
• Conditional Jumps 
• Conditional Loop Instructions 
• Conditional Structures 
• Application: Finite-State Machines 
• Conditional Control Flow Directives 
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Application: Finite-State Machines 

• A finite-state machine (FSM) is a graph structure 
that changes state based on some input. Also called 
a state-transition diagram. 

• We use a graph to represent an FSM, with squares 
or circles called nodes, and lines with arrows 
between the circles called edges. 
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Application: Finite-State Machines 

• A FSM is a specific instance of a more general 
structure called a directed graph. 

• Three basic states, represented by nodes: 
• Start state 
• Terminal state(s) 
• Nonterminal state(s) 
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Finite-State Machine 

• Accepts any sequence of symbols that puts it into 
an accepting (final) state 

• Can be used to recognize, or validate a sequence of 
characters that is governed by language rules 
(called a regular expression) 

• Advantages: 
• Provides visual tracking of program's flow of control 
• Easy to modify 
• Easily implemented in assembly language 
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Finite-State Machine Examples 
• FSM that recognizes strings beginning with 'x', followed by 

letters 'a'..'y', ending with 'z': 

start 'x'

'a'..'y'

'z
'

A B

C

• FSM that recognizes signed integers: 

start

digit

+,-

digit digit

A B

C
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Your Turn . . . 

• Explain why the following FSM does not work as well 
for signed integers as the one shown on the previous 
slide: 

start
digit

+,-A B

digit
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Implementing an FSM 

StateA: 
 call Getnext ; read next char into AL 
 cmp al,'+' ; leading + sign? 
 je StateB ; go to State B 
 cmp al,'-' ; leading - sign? 
 je StateB ; go to State B 
 call IsDigit ; ZF = 1 if AL = digit 
 jz StateC ; go to State C 
 call DisplayErrorMsg ; invalid input found 
 jmp Quit 

The following is code from State A in the Integer FSM: 

View the Finite.asm source code. 
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IsDigit Procedure 

IsDigit PROC 
  cmp   al,'0' ; ZF = 0 
  jb    ID1 
  cmp   al,'9' ; ZF = 0 
  ja    ID1 
  test  ax,0      ; ZF = 1 
ID1: ret 
IsDigit ENDP 

Receives a character in AL. Sets the Zero flag if the character 
is a decimal digit. 
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Flowchart of State A StateA

GetNext

AL = '+' ?

DisplayErrorMsg

true

AL = '-' ? true

ZF = 1 ? true

IsDigit

false

false

false

quit

StateB

StateB

StateC

State A accepts a plus or 
minus sign, or a decimal 
digit. 
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Your Turn . . . 

• Draw a FSM diagram for hexadecimal integer 
constant that conforms to MASM syntax. 

• Draw a flowchart for one of the states in your FSM. 
• Implement your FSM in assembly language. Let the 

user input a hexadecimal constant from the 
keyboard. 
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What's Next 

• Boolean and Comparison Instructions 
• Conditional Jumps 
• Conditional Loop Instructions 
• Conditional Structures 
• Application: Finite-State Machines 
• Conditional Control Flow Directives 
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Creating IF Statements 

• Runtime Expressions 
• Relational and Logical Operators 
• MASM-Generated Code 
• .REPEAT Directive 
• .WHILE Directive 
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Runtime Expressions 

.IF eax > ebx 
 mov edx,1 
.ELSE 
 mov edx,2 
.ENDIF 

• .IF, .ELSE, .ELSEIF, and .ENDIF can be used to evaluate 
runtime expressions and create block-structured IF 
statements. 

• Examples: 

• MASM generates "hidden" code for you, consisting of 
code labels, CMP and conditional jump instructions. 

.IF eax > ebx && eax > ecx 
 mov edx,1 
.ELSE 
 mov edx,2 
.ENDIF 
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Relational and Logical Operators 
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Signed and Unsigned Comparisons 

 mov eax,6 
 cmp eax,val1 
 jbe @C0001  
 mov result,1 
@C0001: 

.data 

val1   DWORD 5 

result DWORD ? 

.code 

mov eax,6 

.IF eax > val1 

  mov result,1 

.ENDIF 

Generated code: 

MASM automatically generates an unsigned jump (JBE) 
because val1 is unsigned. 
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Signed and Unsigned Comparisons 

 mov eax,6 
 cmp eax,val1 
 jle @C0001  
 mov result,1 
@C0001: 

.data 

val1   SDWORD 5 

result SDWORD ? 

.code 

mov eax,6 

.IF eax > val1 

  mov result,1 

.ENDIF 

Generated code: 

MASM automatically generates a signed jump (JLE) because 
val1 is signed. 
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Signed and Unsigned Comparisons 

 mov ebx,5 
 mov eax,6 
 cmp eax,ebx 
 jbe @C0001  
 mov result,1 
@C0001: 

.data 

result DWORD ? 

.code 

mov ebx,5 

mov eax,6 

.IF eax > ebx 

  mov result,1 

.ENDIF 

Generated code: 

MASM automatically generates an unsigned jump (JBE) when 
both operands are registers . . . 
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Signed and Unsigned Comparisons 

 mov ebx,5 
 mov eax,6 
 cmp eax,ebx 
 jle @C0001  
 mov result,1 
@C0001: 

.data 

result SDWORD ? 

.code 

mov ebx,5 

mov eax,6 

.IF SDWORD PTR eax > ebx 

  mov result,1 

.ENDIF 

Generated code: 

. . . unless you prefix one of the register operands with the 
SDWORD PTR operator. Then a signed jump is generated. 
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.REPEAT Directive 

; Display integers 1 – 10: 
 
mov eax,0 
.REPEAT 
 inc eax 
 call WriteDec 
 call Crlf 
.UNTIL eax == 10 

Executes the loop body before testing the loop condition 
associated with the .UNTIL directive.  

Example: 
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.WHILE Directive 

; Display integers 1 – 10: 
 
mov eax,0 
.WHILE eax < 10 
 inc eax 
 call WriteDec 
 call Crlf 
.ENDW 

Tests the loop condition before executing the loop body The 
.ENDW directive marks the end of the loop.  

Example: 
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Summary 

• Bitwise instructions (AND, OR, XOR, NOT, TEST)  
• manipulate individual bits in operands 

• CMP – compares operands using implied subtraction 
• sets condition flags 

• Conditional Jumps & Loops 
• equality: JE, JNE 
• flag values: JC, JZ, JNC, JP, ... 
• signed: JG, JL, JNG, ... 
• unsigned: JA, JB, JNA, ... 
• LOOPZ, LOOPNZ, LOOPE, LOOPNE 

• Flowcharts – logic diagramming tool 
• Finite-state machine – tracks state changes at runtime 
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