
Assembly Language for x86 Processors
7th Edition

Chapter 15: Disk Fundamentals

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Disk Storage Systems
• File Systems
• Disk Directory
• Reading and Writing Disk Sectors (7305h)
• System-Level File Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Disk Storage Systems

• Tracks, Cylinders, and Sectors
• Disk Partitions (Volumes)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Tracks and Sectors

• Physical disk geometry - a way of describing the
disk’s structure to make it readable by the
system BIOS

• Track - concentric circle containing data
• Sector - part of a track

track
sector

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Cylinders and Seeking

• Cylinder - all tracks readable from one head position
• Seek - move read/write heads between tracks

platter

rotating spindle head 0 head 1

movement

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

Disk Formatting

• Physical formatting
• aka low-level formatting
• Usually done at the factory.
• Must be done before logical formatting
• Defines the tracks, sectors, and cylinders

• Logical formatting
• Permits disk to be accessed using sequentially

numbered logical sectors
• Installs a file system (ex: NTFS)
• May install an operating system

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

Fragmentation

• A fragmented file is one whose sectors are no longer
located in contiguous areas of the disk.
• causes read/write heads to skip
• slower file access
• possible read/write errors

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

Translation

• Translation - conversion of physical disk geometry to
a sequence of logical sector numbers

• Performed by a hard disk controller (firmware)
• Logical sector numbers are numbered sequentially,

have no direct mapping to hardware

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Disk Partitions

• Logical units that divide a physical hard disk
• Also called volumes

• Primary partition
• Up to four permitted
• Each may boot a different OS

• Extended partition
• Maximum of one permitted
• May be divided into multiple logical partitions, each

with a different drive letter

• Primary and Extended
• Up to three primary and one extended

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Logical Partitions

• Created from an extended partition
• No limit on the number
• Each has a separate drive letter
• Usually contain data
• Can be bootable (ex: Linux)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Disk Partition Table

• Located in the disk's Master Boot Record (MBR),
following a block of executable code

• Four entries, one for each possible partition
• Each entry contains the following fields:

• state (non-active, bootable)
• type of partition (BigDOS, Extended, . . .)
• beginning head, cylinder, & sector numbers
• ending head, cylinder, & sector numbers
• offset of partition from MBR
• number of sectors in the partition

See also: www.datarescue.com/laboratory/partition.htm

http://www.datarescue.com/laboratory/partition.htm

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Cascading Partition Tables

Boot, BigDOS
NA, Extended NA, BigDOS

NA, BigDOS
Drive D

Drive E

Primary partition

links to

Boot = bootable (system)
NA = non active
BigDOS = over 32 MB

Logical partitions (D, E)

Drive C

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Dual-Boot Example

• System 98 and Win2000-A are bootable partitions
• One is called the system partition when active

• DATA_1 and BACKUP are logical partitions
• Their data can be shared by both operating systems

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Master Boot Record (MBR)

• The MBR contains the following elements:
• Disk partititon table
• A program that jumps to the boot sector of the system

partition

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

What's Next

• Disk Storage Systems
• File Systems
• Disk Directory
• Reading and Writing Disk Sectors (7305h)
• System-Level File Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

File Systems

• Directory, File, Cluster Relationships
• Clusters
• FAT12
• FAT16
• FAT32
• NTFS
• Primary Disk Areas

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

File System

• This is what it does for you:
• Keeps track of allocated and free space
• Maintains directories and filenames
• Tracks the sector location of each file and directory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

Directory, File, Cluster, Sector Relationships

File System

Logical sectors

Filename

lists a

Cluster chain

maps to

map to

maps to

Physical sectors

stored in File Allocation Table

stored in Directory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

Cluster (1 of 2)

• Smallest unit of space used by a file
• Consists of one or more adjacent sectors
• Size depends on both the type of file system in use

and the disk partition size
• A file is a linked sequence of clusters. Example:

Cluster 1

1 2 43

Cluster 2

5 6 87

sector

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Cluster (2 of 2)

• A file always uses at least one cluster
• A high percentage of space may be wasted
• Example: 8,200-byte file requires three 4K clusters:

Cluster 1 Cluster 2 Cluster 3

File size: 8,200 bytes

4,096 used
8 bytes used,
4,088 empty4,096 used

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

FAT12

• Designed for diskettes
• Each FAT entry is 12 bits
• Very little fault tolerance

• two copies of the FAT (cluster table)
• Optimal storage for small files

• 512-byte clusters

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

FAT16

• MS-DOS format for hard disks
• 16-bit FAT entries
• Large cluster size when disk > 1 GB

• inneficient for small files
• Max 2 GB size under MS-DOS
• Little or no recovery from read/write errors

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

FAT32

• Supports long filenames
• Supported by all version of MS-Windows

from Windows 95 onward
• (except Windows NT)

• 32-bit FAT entries
• 32 GB maximum volume size
• Improved recovery from read/write errors

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

NTFS

• Supported by Windows NT, 2000, and XP
• Handles large volumes

• can span multiple hard drives
• Efficient cluster size (4K) on large volumes
• Unicode filenames
• Permissions on files & folders
• Share folders across network
• Built-in compression and encryption
• Track changes in a change journal
• Disk quotas for individuals or groups
• Robust error recovery
• Disk mirroring

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

Primary Disk Areas

• A disk or volume is divided into predefined areas
and assigned specific logical sectors.

• Example: 1.44 MB diskette
• Boot record (sector 0)
• File allocation table (sectors 1 – 18)
• Root directory (sectors 19 – 32)
• Data area (sectors 33 – 2,879)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Your turn . . .

1. A 1.44 MB diskette has 512 bytes per cluster.
Suppose a certain file begins in cluster number 5.
Which logical disk sector contains the beginning of
the file? (Hint: see page 503).

2. Suppose a certain hard drive has 4 KB per cluster,
and we know that the data area begins in sector 100.
If a particular file begins in cluster 10, which logical
sectors are used by the cluster?

(answers on next panel . . .)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Answers

1. The data area begins in Sector 33. Each cluster = 1
sector, so the file begins in sector 33 + 5 = sector 38.

2. The hard drive has 8 sectors per cluster. The starting
cluster number of the file is 100 + (8 * 10) = 180.
Therefore, sectors 180 – 187 are used by the file's
first cluster.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Boot Record (1 of 2)

• Fields in a typical MS-DOS boot record:
• Jump to boot code (JMP instruction)
• Manufacturer name, version number
• Bytes per sector
• Sectors per cluster
• Number of reserved sectors (preceding FAT #1)
• Number of copies of FAT
• Maximum number of root directory entries
• Number of disk sectors for drives under 32 MB
• Media descriptor byte
• Size of FAT, in sectors
• Sectors per track

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Boot Record (2 of 2)

(continued)
• Number of drive heads
• Number of hidden sectors
• Number of disk sectors for drives over 32 MB
• Drive number (modified by MS-DOS)
• Reserved
• Extended boot signature (always 29h)
• Volume ID number (binary)
• Volume label
• File-system type (ASCII)
• Start of boot program and data

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

What's Next

• Disk Storage Systems
• File Systems
• Disk Directory
• Reading and Writing Disk Sectors (7305h)
• System-Level File Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Keeping Track of Files

• MS-DOS Directory Structure
• Long Filenames in MS-Windows
• File Allocation Table

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

MS-DOS Directory Structure (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

MS-DOS Directory Structure (2 of 2)

Time field equals 4DBDh (9:45:58), and the Date field
equals 247Ah (March 26, 1998). Attribute is normal:

4D 41 2049 4E 20 20 20 43 50 50 20 00 22 E8 80

A5 24 A5 24 00 00 BD 4D 7A 24 20 00 EE 04 00 00

-

-

Filename

Time Date

Extension

Starting
Cluster

File
size

Attribute

MAIN

.$.$...Mz$

CPP ."..

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

Date and Time Fields

• Date stamp field:

• Time stamp field:

year daymonth

015

hours secondsminutes

015

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

Your turn . . .

• What time value is represented here?

0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0
hours secondsminutes

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

File Attribute Values

read-only file

hidden file

system file

volume label

subdirectory

archive bit

(reserved, 0)

(reserved, 0)

What type of file has attribute 00100111 . . . ?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Long Filenames in Windows

 Filename: ABCDEFGHIJKLMNOPQRSTUV.TXT

01A0 42 4E 00 4F 00 50 00 51 00 52 00 0F 00 27 53 00 BN.O.P.Q.R...'S.
01B0 54 00 55 00 56 00 2E 00 54 00 00 00 58 00 54 00 T.U.V...T...X.T.

01C0 01 41 00 42 00 43 00 44 00 45 00 0F 00 27 46 00 .A.B.C.D.E...'F.
01D0 47 00 48 00 49 00 4A 00 4B 00 00 00 4C 00 4D 00 G.H.I.J.K...L.M.

01E0 41 42 43 44 45 46 7E 31 54 58 54 20 00 AF 78 62 ABCDEF~1TXT ..xb
01F0 2F 2B 30 2B 00 00 59 B9 30 2B 02 00 52 01 00 00 /+0+..Y.0+..R...

first long
entry

last long
entry

attribute (long
entry)

create
timecreate date last

access
date

last modified
time

last modified
date

first
cluster

file
size

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

File Allocation Table (1 of 2)

• A map of all clusters on the disk, showing their
ownership by specific files

• Each entry corresponds to a cluster number
• Each cluster contains one or more sectors
• Each file is represented in the FAT as a linked list,

called a cluster chain.
• Three types of FAT's, named after the length of each

FAT entry:
• FAT-12
• FAT-16
• FAT-32

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

File Allocation Table (2 of 2)

• Each entry contains an n-bit integer that identifies the
next entry. (n=12,16, or 32)

• Two cluster chains are shown in the following
diagram, one for File1, and another for File2:

2
1

3
2

4
3

8
4 5 6 7

9
8

10
9

eof

10 11 12 13 14 15 16

File1: starting cluster number = 1, size = 7 clusters

1 2 3 4
6
5

7
6

11
7 8 9 10

12
11

eof

12 13 14 15 16

File2: starting cluster number = 5, size = 5 clusters

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

What's Next

• Disk Storage Systems
• File Systems
• Disk Directory
• Reading and Writing Disk Sectors (7305h)
• System-Level File Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

Reading and Writing Disk Sectors (7305h)

• INT 21h, Function 7305h (absolute disk read and
write)

• Reads and writes logical disk sectors
• Runs only in 16-bit Real-address mode
• Does not work under Windows 2000, XP, Vista,

Windows 7
• Tight security!

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

DISKIO Structure

• Used by Function 7305h:

DISKIO STRUCT
 startSector DWORD 0 ; starting sector number
 numSectors WORD 1 ; number of sectors
 bufferOfs WORD buffer ; buffer offset
 bufferSeg WORD @DATA ; buffer segment
DISKIO ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Example

.data
buffer BYTE 512 DUP(?)
diskStruct DISKIO <>
.code
 mov ax,7305h ; absolute Read/Write
 mov cx,0FFFFh ; always this value
 mov dl,3 ; drive C
 mov bx,OFFSET diskStruct
 mov si,0 ; read sector
 int 21h

Example: Read one or more sectors from drive C:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

Sector Display Program

Pseudocode:
Ask for starting sector number and drive number
do while (keystroke <> ESC)
 Display heading
 Read one sector
 If MS-DOS error then exit
 Display one sector
 Wait for keystroke
 Increment sector number
end do

View the source code

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

What's Next

• Disk Storage Systems
• File Systems
• Disk Directory
• Reading and Writing Disk Sectors (7305h)
• System-Level File Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

System-Level File Functions

• Common Disk-Related Functions
• Get Disk Free Space
• Create Subdirectory
• Remove Subdirecrory
• Set Current Directory
• Get Current Directory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Common Disk-Related Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

ExtGetDskFreSpcStruc Structure (1 of 2)

• StructSize: A return value that represents the size of
the ExtGetDskFreSpcStruc structure, in bytes.

• Level: Always 0.
• SectorsPerCluster: The number of sectors inside

each cluster.
• BytesPerSector: The number of bytes in each sector.
• AvailableClusters: The number of available clusters.
• TotalClusters: The total number of clusters in the

volume.

Structure data returned by Fucntion 7303h:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

ExtGetDskFreSpcStruc (2 of 2)

• AvailablePhysSectors: The number of physical sectors available
in the volume, without adjustment for compression.

• TotalPhysSectors: The total number of physical sectors in the
volume, without adjustment for compression.

• AvailableAllocationUnits: The number of available allocation
units in the volume, without adjustment for compression.

• TotalAllocationUnits: The total number of allocation units in the
volume, without adjustment for compression.

• Rsvd: Reserved member.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

Function 7303h – Get Disk Free Space

• AX = 7303h
• ES:DI points to a ExtGetDskFreSpcStruc
• CX = size of the ExtGetDskFreSpcStruc variable
• DS:DX points to a null-terminated string containing

the drive name

View the DiskSpc.asm program

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

Create Subdirectory

.data
pathname BYTE "\ASM",0

.code
 mov ah,39h ; create subdirectory
 mov dx,OFFSET pathname
 int 21h
 jc DisplayError
 .
 .
DisplayError:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Remove Subdirecrory

.data
pathname BYTE 'C:\ASM',0

.code
 mov ah,3Ah ; remove subdirectory
 mov dx,OFFSET pathname
 int 21h
 jc DisplayError
 .
 .
DisplayError:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Set Current Directory

.data
pathname BYTE "C:\ASM\PROGS",0

.code
 mov ah,3Bh ; set current directory
 mov dx,OFFSET pathname
 int 21h
 jc DisplayError
 .
 .
DisplayError:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Get Current Directory

.data
pathname BYTE 64 dup(0) ; path stored here by MS-DOS

.code
 mov ah,47h ; get current directory path
 mov dl,0 ; on default drive
 mov si,OFFSET pathname
 int 21h
 jc DisplayError
 .
 .
DisplayError:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

Your turn . . .

• Write a program that creates a hidden, read-only
directory named __secret. Create a hidden file inside
the new directory named $$temp. Try to remove the
directory by calling Function 3Ah. Display the error
code returned by MS-DOS.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

Summary

• Disk controller: acts as a broker between the
hardware and the operating system

• Disk characteristics
• composed of tracks, cylinders, sectors
• average seek time, data transfer rate

• Formatting & logical characteristics
• master boot record, contains disk partition table
• clusters – logical storage units
• file allocation table – used by some systems
• directory – root directory, subdirectories

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

The End

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Disk Storage Systems
	Tracks and Sectors
	Cylinders and Seeking
	Disk Formatting
	Fragmentation
	Translation
	Disk Partitions
	Logical Partitions
	Disk Partition Table
	Cascading Partition Tables
	Dual-Boot Example
	Master Boot Record (MBR)
	What's Next
	File Systems
	File System
	Directory, File, Cluster, Sector Relationships
	Cluster (1 of 2)
	Cluster (2 of 2)
	FAT12
	FAT16
	FAT32
	NTFS
	Primary Disk Areas
	Your turn . . .
	Answers
	Boot Record (1 of 2)
	Boot Record (2 of 2)
	What's Next
	Keeping Track of Files
	MS-DOS Directory Structure (1 of 2)
	MS-DOS Directory Structure (2 of 2)
	Date and Time Fields
	Your turn . . .
	File Attribute Values
	Long Filenames in Windows
	File Allocation Table (1 of 2)
	File Allocation Table (2 of 2)
	What's Next
	Reading and Writing Disk Sectors (7305h)
	DISKIO Structure
	Example
	Sector Display Program
	What's Next
	System-Level File Functions
	Common Disk-Related Functions
	ExtGetDskFreSpcStruc Structure (1 of 2)
	ExtGetDskFreSpcStruc (2 of 2)
	Function 7303h – Get Disk Free Space
	Create Subdirectory
	Remove Subdirecrory
	Set Current Directory
	Get Current Directory
	Your turn . . .
	Summary
	The End

