
Assembly Language for x86 Processors
7th Edition

Chapter 12: Floating-Point Processing
and Instruction Encoding

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Floating-Point Binary Representation
• Floating-Point Unit
• x86 Instruction Encoding

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Floating-Point Binary Representation

• IEEE Floating-Point Binary Reals
• The Exponent
• Normalized Binary Floating-Point Numbers
• Creating the IEEE Representation
• Converting Decimal Fractions to Binary Reals

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

IEEE Floating-Point Binary Reals

• Types
• Single Precision

• 32 bits: 1 bit for the sign, 8 bits for the exponent,
and 23 bits for the fractional part of the significand.

• Double Precision
• 64 bits: 1 bit for the sign, 11 bits for the exponent,

and 52 bits for the fractional part of the significand.
• Double Extended Precision

• 80 bits: 1 bit for the sign, 16 bits for the exponent,
and 63 bits for the fractional part of the significand.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Single-Precision Format

exponent fraction

1 238

sign

Approximate normalized range: 2–126 to 2127.
Also called a short real.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

Components of a Single-Precision Real

• Sign
• 1 = negative, 0 = positive

• Significand
• decimal digits to the left & right of decimal point
• weighted positional notation
• Example:

123.154 = (1 x 102) + (2 x 101) + (3 x 100) + (1 x 10–1)
+ (5 x 10–2) + (4 x 10–3)

• Exponent
• unsigned integer
• integer bias (127 for single precision)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

Decimal Fractions vs Binary Floating-Point

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

The Exponent

• Sample Exponents represented in Binary
• Add 127 to actual exponent to produce the biased

exponent

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Normalizing Binary Floating-Point Numbers

• Mantissa is normalized when a single 1 appears to
the left of the binary point

• Unnormalized: shift binary point until exponent is zero
• Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Real-Number Encodings

• Normalized finite numbers
• all the nonzero finite values that can be encoded in a

normalized real number between zero and infinity
• Positive and Negative Infinity
• NaN (not a number)

• bit pattern that is not a valid FP value
• Two types:

• quiet
• signaling

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Real-Number Encodings (cont)

• Specific encodings (single precision):

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Examples (Single Precision)

• Order: sign bit, exponent bits, and fractional part
(mantissa)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Converting Fractions to Binary Reals

• Express as a sum of fractions having denominators
that are powers of 2

• Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Converting Single-Precision to Decimal

1. If the MSB is 1, the number is negative; otherwise, it is positive.
2. The next 8 bits represent the exponent. Subtract binary

01111111 (decimal 127), producing the unbiased exponent.
Convert the unbiased exponent to decimal.

3. The next 23 bits represent the significand. Notate a “1.”, followed
by the significand bits. Trailing zeros can be ignored. Create a
floating-point binary number, using the significand, the sign
determined in step 1, and the exponent calculated in step 2.

4. Unnormalize the binary number produced in step 3. (Shift the
binary point the number of places equal to the value of the
exponent. Shift right if the exponent is positive, or left if the
exponent is negative.)

5. From left to right, use weighted positional notation to form the
decimal sum of the powers of 2 represented by the floating-point
binary number.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Example

Convert 0 10000010 1011000000000000000000 to
Decimal

1. The number is positive.
2. The unbiased exponent is binary 00000011, or

decimal 3.
3. Combining the sign, exponent, and significand, the

binary number is +1.01011 X 23.
4. The unnormalized binary number is +1010.11.
5. The decimal value is +10 3/4, or +10.75.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

What's Next

• Floating-Point Binary Representation
• Floating-Point Unit
• x86 Instruction Encoding

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

Floating Point Unit

• FPU Register Stack
• Rounding
• Floating-Point Exceptions
• Floating-Point Instruction Set
• Arithmetic Instructions
• Comparing Floating-Point Values
• Reading and Writing Floating-Point Values
• Exception Synchronization
• Mixed-Mode Arithmetic
• Masking and Unmasking Exceptions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

FPU Register Stack

• Eight individually addressable 80-bit data registers named R0
through R7

• Three-bit field named TOP in the FPU status word identifies
the register number that is currently the top of stack.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

Special-Purpose Registers

• Opcode register: stores opcode of last noncontrol
instruction executed

• Control register: controls precision and rounding
method for calculations

• Status register: top-of-stack pointer, condition
codes, exception warnings

• Tag register: indicates content type of each
register in the register stack

• Last instruction pointer register: pointer to last
non-control executed instruction

• Last data (operand) pointer register: points to
data operand used by last executed instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Rounding

• FPU attempts to round an infinitely accurate result
from a floating-point calculation
• may be impossible because of storage limitations

• Example
• suppose 3 fractional bits can be stored, and a

calculated value equals +1.0111.
• rounding up by adding .0001 produces 1.100
• rounding down by subtracting .0001 produces 1.011

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

Floating-Point Exceptions

• Six types of exception conditions
• Invalid operation
• Divide by zero
• Denormalized operand
• Numeric overflow
• Inexact precision

• Each has a corresponding mask bit
• if set when an exception occurs, the exception is handled

automatically by FPU
• if clear when an exception occurs, a software exception

handler is invoked

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

FPU Instruction Set

• Instruction mnemonics begin with letter F
• Second letter identifies data type of memory operand

• B = bcd
• I = integer
• no letter: floating point

• Examples
• FLBD load binary coded decimal
• FISTP store integer and pop stack
• FMUL multiply floating-point operands

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

FPU Instruction Set

• Operands
• zero, one, or two
• no immediate operands
• no general-purpose registers (EAX, EBX, ...)
• integers must be loaded from memory onto the stack

and converted to floating-point before being used in
calculations

• if an instruction has two operands, one must be a FPU
register

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

FP Instruction Set

• Data Types

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

Load Floating-Point Value

• FLD
• copies floating point operand from memory into the

top of the FPU stack, ST(0)

• Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Store Floating-Point Value

• FST
• copies floating point operand from the top of the FPU

stack into memory
• FSTP

• pops the stack after copying

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Arithmetic Instructions

• Same operand types as FLD and FST

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Floating-Point Add

• FADD
• adds source to destination
• No-operand version pops the FPU

stack after subtracting
• Examples:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Floating-Point Subtract

• FSUB
• subtracts source from destination.
• No-operand version pops the FPU

stack after subtracting

• Example:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Floating-Point Multiply

• FMUL
• Multiplies source by

destination, stores product in
destination

• FDIV

• Divides destination by source,
then pops the stack

The no-operand versions of FMUL and FDIV pop the
stack after multiplying or dividing.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Comparing FP Values

• FCOM instruction
• Operands:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

FCOM

• Condition codes set by FPU
• codes similar to CPU flags

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Branching after FCOM

• Required steps:
1. Use the FNSTSW instruction to move the FPU status

word into AX.
2. Use the SAHF instruction to copy AH into the

EFLAGS register.
3. Use JA, JB, etc to do the branching.

Fortunately, the FCOMI instruction does steps 1 and
2 for you.
 fcomi ST(0), ST(1)

 jnb Label1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

Comparing for Equality

• Calculate the absolute value of the difference
between two floating-point values

.data
epsilon REAL8 1.0E-12 ; difference value
val2 REAL8 0.0 ; value to compare
val3 REAL8 1.001E-13 ; considered equal to val2

.code
; if(val2 == val3), display "Values are equal".
 fld epsilon
 fld val2
 fsub val3
 fabs
 fcomi ST(0),ST(1)
 ja skip
 mWrite <"Values are equal",0dh,0ah>
skip:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

Floating-Point I/O

• Irvine32 library procedures
• ReadFloat

• reads FP value from keyboard, pushes it on the FPU
stack

• WriteFloat
• writes value from ST(0) to the console window in

exponential format
• ShowFPUStack

• displays contents of FPU stack

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

Exception Synchronization

• Main CPU and FPU can execute instructions concurrently
• if an unmasked exception occurs, the current FPU

instruction is interrupted and the FPU signals an exception
• But the main CPU does not check for pending FPU

exceptions. It might use a memory value that the interrupted
FPU instruction was supposed to set.

• Example:

 .data
 intVal DWORD 25
 .code
 fild intVal ; load integer into ST(0)
 inc intVal ; increment the integer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Exception Synchronization

• (continued)
• For safety, insert a fwait instruction, which tells the CPU to

wait for the FPU's exception handler to finish:

 .data
 intVal DWORD 25
 .code
 fild intVal ; load integer into ST(0)
 fwait ; wait for pending exceptions
 inc intVal ; increment the integer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

FPU Code Example

expression: valD = –valA + (valB * valC).

.data
valA REAL8 1.5
valB REAL8 2.5
valC REAL8 3.0
valD REAL8 ? ; will be +6.0

.code
fld valA ; ST(0) = valA
fchs ; change sign of ST(0)
fld valB ; load valB into ST(0)
fmul valC ; ST(0) *= valC
fadd ; ST(0) += ST(1)
fstp valD ; store ST(0) to valD

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

Mixed-Mode Arithmetic

• Combining integers and reals.
• Integer arithmetic instructions such as ADD and MUL cannot

handle reals
• FPU has instructions that promote integers to reals and load

the values onto the floating point stack.
• Example: Z = N + X
.data
N SDWORD 20
X REAL8 3.5
Z REAL8 ?
.code
fild N ; load integer into ST(0)
fwait ; wait for exceptions
fadd X ; add mem to ST(0)
fstp Z ; store ST(0) to mem

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

Masking and Unmasking Exceptions

• Exceptions are masked by default
• Divide by zero just generates infinity, without halting the

program
• If you unmask an exception

• processor executes an appropriate exception handler
• Unmask the divide by zero exception by clearing bit 2:

.data
ctrlWord WORD ?
.code
fstcw ctrlWord ; get the control word
and ctrlWord,1111111111111011b ; unmask divide by zero
fldcw ctrlWord ; load it back into FPU

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

What's Next

• Floating-Point Binary Representation
• Floating-Point Unit
• x86 Instruction Encoding

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

x86 Instruction Encoding

• x86 Instruction Format
• Single-Byte Instructions
• Move Immediate to Register
• Register-Mode Instructions
• x86 Processor Operand-Size Prefix
• Memory-Mode Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

x86 Instruction Format

• Fields
• Instruction prefix byte (operand size)
• opcode
• Mod R/M byte (addressing mode & operands)
• scale index byte (for scaling array index)
• address displacement
• immediate data (constant)

• Only the opcode is required

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

x86 Instruction Format

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

Single-Byte Instructions

• Only the opcode is used
• Zero operands

• Example: AAA
• One implied operand

• Example: INC DX

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Move Immediate to Register

• Op code, followed by immediate value
• Example: move immediate to register
• Encoding format: B8+rw dw

• (B8 = opcode, +rw is a register number, dw is the
immediate operand)

• register number added to B8 to produce a new opcode

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Register-Mode Instructions

• Mod R/M byte contains a 3-bit register number for
each register operand
• bit encodings for register numbers:

• Example: MOV AX, BX

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

x86 Operand Size Prefix

• Overrides default segment attribute (16-bit or 32-bit)
• Special value recognized by processor: 66h
• Intel ran out of opcodes for x86 processors

• needed backward compatibility with 8086
• On x86 system, prefix byte used when 16-bit

operands are used

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

x86 Operand Size Prefix

• Sample encoding for 16-bit target:

• Encoding for 32-bit target:

overrides default
operand size

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

Memory-Mode Instructions

• Wide variety of operand types (addressing modes)
• 256 combinations of operands possible

• determined by Mod R/M byte
• Mod R/M encoding:

• mod = addressing mode
• reg = register number
• r/m = register or memory indicator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

MOV Instruction Examples

• Selected formats for 8-bit and 16-bit MOV
instructions:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Sample MOV Instructions

Assume that myWord is located at offset 0102h.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Summary

• Binary floating point number contains a sign,
significand, and exponent
• single precision, double precision, extended precision

• Not all significands between 0 and 1 can be
represented correctly
• example: 0.2 creates a repeating bit sequence

• Special types
• Normalized finite numbers
• Positive and negative infinity
• NaN (not a number)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Summary - 2

• Floating Point Unit (FPU) operates in parallel with
CPU
• register stack: top is ST(0)
• arithmetic with floating point operands
• conversion of integer operands
• floating point conversions
• intrinsic mathematical functions

• x86 Instruction set
• complex instruction set, evolved over time
• backward compatibility with older processors
• encoding and decoding of instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

The End

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Floating-Point Binary Representation
	IEEE Floating-Point Binary Reals
	Single-Precision Format
	Components of a Single-Precision Real
	Decimal Fractions vs Binary Floating-Point
	The Exponent
	Normalizing Binary Floating-Point Numbers
	Real-Number Encodings
	Real-Number Encodings (cont)
	Examples (Single Precision)
	Converting Fractions to Binary Reals
	Converting Single-Precision to Decimal
	Example
	What's Next
	Floating Point Unit
	FPU Register Stack
	Special-Purpose Registers
	Rounding
	Floating-Point Exceptions
	FPU Instruction Set
	FPU Instruction Set
	FP Instruction Set
	Load Floating-Point Value
	Store Floating-Point Value
	Arithmetic Instructions
	Floating-Point Add
	Floating-Point Subtract
	Floating-Point Multiply
	Comparing FP Values
	FCOM
	Branching after FCOM
	Comparing for Equality
	Floating-Point I/O
	Exception Synchronization
	Exception Synchronization
	FPU Code Example
	Mixed-Mode Arithmetic
	Masking and Unmasking Exceptions
	What's Next
	x86 Instruction Encoding	
	x86 Instruction Format
	x86 Instruction Format
	Single-Byte Instructions
	Move Immediate to Register
	Register-Mode Instructions
	x86 Operand Size Prefix
	x86 Operand Size Prefix
	Memory-Mode Instructions
	MOV Instruction Examples
	Sample MOV Instructions
	Summary
	Summary - 2
	The End

