
Assembly Language for x86 Processors
7th Edition

Chapter 11: MS-Windows
Programming

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Win32 Console Programming
• Writing a Graphical Windows Application
• Dynamic Memory Allocation
• x86 Memory Management

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Useful Questions

• How do 32-bit programs handle text input-output?
• How are colors handled in 32-bit console mode?
• How does the Irvine32 link library work?
• How are times and dates handled in MS-Windows?
• How can I use MS-Windows functions to read and

write data files?
• Is it possible to write a graphical Windows application

in assembly language?
• How do Protected mode programs translate

segments and offsets to physical addresses?
• I’ve heard that virtual memory is good. But why is that

so?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Win32 Console Programming

• Background Information
• Win32 Console Programs
• API and SDK
• Windows Data Types
• Standard Console Handles

• Console Input
• Console Output
• Reading and Writing Files
• Console Window Manipulation
• Controlling the Cursor
• Controlling the Text Color
• Time and Date Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Win32 Console Programs

• Run in Protected mode
• Emulate MS-DOS
• Standard text-based input and output
• Linker option : /SUBSYSTEM:CONSOLE
• The console input buffer contains a queue of input

records, each containing data about an input event.
• A console screen buffer is a two-dimensional array of

character and color data that affects the appearance
of text in the console window.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

Classifying Console Functions

• Text-oriented (high-level) console functions
• Read character streams from input buffer
• Write character streams to screen buffer
• Redirect input and output

• Event-oriented (low-level) console functions
• Retrieve keyboard and mouse events
• Detect user interactions with the console window
• Control window size & position, text colors

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

API and SDK

• Microsoft Win32 Application Programming Interface
• API: a collection of types, constants, and functions that

provide a way to directly manipulate objects through
programming

• Microsoft Platform Software Development Kit
• SDK: a collection of tools, libraries, sample code, and

documentation that helps programmers create
applications

• Platform: an operating system or a group of closely
related operating systems

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

Translating Windows Data Types

Windows Type(s) MASM Type

BOOL DWORD

LONG SDWORD

COLORREF, HANDLE, LPARAM, LPCTSTR,
LPTSTR, LPVOID, LRESULT, UINT, WNDPROC,
WPARAM

DWORD

BSTR, LPCSTR, LPSTR PTR BYTE

WORD WORD

LPCRECT PTR RECT

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Standard Console Handles

• STD_INPUT_HANDLE
• standard input

• STD_OUTPUT_HANDLE
• standard output

• STD_ERROR_HANDLE
• standard error output

A handle is an unsigned 32-bit integer. The
following MS-Windows constants are predefined
to specify the type of handle requested:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

GetStdHandle

• GetStdHandle returns a handle to a console stream
• Specify the type of handle (see previous slide)
• The handle is returned in EAX
• Prototype:

• Sample call:

GetStdHandle PROTO,
 nStdHandle:DWORD ; handle type

INVOKE GetStdHandle, STD_OUTPUT_HANDLE
mov myHandle, eax

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Console Input

• The ReadConsole function provides a convenient
way to read text input and put it in a buffer.

• Prototype:

ReadConsole PROTO,
 handle:DWORD, ; input handle
 pBuffer:PTR BYTE, ; pointer to buffer
 maxBytes:DWORD, ; number of chars to read
 pBytesRead:PTR DWORD, ; ptr to num bytes read
 notUsed:DWORD ; (not used)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Single-Character Input

• Get a copy of the current console flags by calling
GetConsoleMode. Save the flags in a variable.

• Change the console flags by calling
SetConsoleMode.

• Input a character by calling ReadConsole.
• Restore the previous values of the console flags by

calling SetConsoleMode.

Here's how to input single characters:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Excerpts from ReadChar (1 of 2)

.data
consoleInHandle DWORD ?
saveFlags DWORD ? ; backup copy of flags

.code
; Get & save the current console input mode flags
INVOKE GetConsoleMode, consoleInHandle, ADDR saveFlags

; Clear all console flags
INVOKE SetConsoleMode, consoleInHandle, 0

From the ReadChar procedure in the Irvine32 library:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Excerpts from ReadChar (2 of 2)

; Read a single character from input
INVOKE ReadConsole,
 consoleInHandle, ; console input handle
 ADDR buffer, ; pointer to buffer
 1, ; max characters to read
 ADDR bytesRead, ; return num bytes read
 0 ; not used

; Restore the previous flags state
INVOKE SetConsoleMode, consoleInHandle, saveFlags

From the ReadChar procedure in the Irvine32 library:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

COORD and SMALL_RECT

• The COORD structure specifies X and Y screen
coordinates in character measurements, which default to
0-79 and 0-24.

• The SMALL_RECT structure specifies a window’s
location in character measurements.

COORD STRUCT
 X WORD ?
 Y WORD ?
COORD ENDS

SMALL_RECT STRUCT
 Left WORD ?
 Top WORD ?
 Right WORD ?
 Bottom WORD ?
SMALL_RECT ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

WriteConsole

• The WriteConsole function writes a string to the
screen, using the console output handle. It acts upon
standard ASCII control characters such as tab,
carriage return, and line feed.

• Prototype:

WriteConsole PROTO,
 handle:DWORD, ; output handle
 pBuffer:PTR BYTE, ; pointer to buffer
 bufsize:DWORD, ; size of buffer
 pCount:PTR DWORD, ; output count
 lpReserved:DWORD ; (not used)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

WriteConsoleOutputCharacter

• The WriteConsoleOutputCharacter function copies an
array of characters to consecutive cells of the
console screen buffer, beginning at a specified
location.

• Prototype:

WriteConsoleOutputCharacter PROTO,
 handleScreenBuf:DWORD, ; console output handle
 pBuffer:PTR BYTE, ; pointer to buffer
 bufsize:DWORD, ; size of buffer
 xyPos:COORD, ; first cell coordinates
 pCount:PTR DWORD ; output count

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

File Manipulation

• Win32 API Functions that create, read, and
write to files:
• CreateFile
• ReadFile
• WriteFile
• SetFilePointer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

CreateFile

• CreateFile either creates a new file or opens an
existing file. If successful, it returns a handle to the
open file; otherwise, it returns a special constant
named INVALID_HANDLE_VALUE.

• Prototype:

CreateFile PROTO,
 pFilename:PTR BYTE, ; ptr to filename
 desiredAccess:DWORD, ; access mode
 shareMode:DWORD, ; share mode
 lpSecurity:DWORD, ; ptr to security attribs
 creationDisposition:DWORD, ; file creation options
 flagsAndAttributes:DWORD, ; file attributes
 htemplate:DWORD ; handle to template file

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

CreateFile Examples (1 of 3)

INVOKE CreateFile,
 ADDR filename, ; ptr to filename
 GENERIC_READ, ; access mode
 DO_NOT_SHARE, ; share mode
 NULL, ; ptr to security attributes
 OPEN_EXISTING, ; file creation options
 FILE_ATTRIBUTE_NORMAL, ; file attributes
 0 ; handle to template file

Opens an existing file for reading:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

CreateFile Examples (2 of 3)

INVOKE CreateFile,
 ADDR filename,
 GENERIC_WRITE, ; access mode
 DO_NOT_SHARE,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 0

Opens an existing file for writing:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

CreateFile Examples (3 of 3)

INVOKE CreateFile,
 ADDR filename,
 GENERIC_WRITE,
 DO_NOT_SHARE,
 NULL,
 CREATE_ALWAYS, ; overwrite existing file
 FILE_ATTRIBUTE_NORMAL,
 0

Creates a new file with normal attributes, erasing any
existing file by the same name:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

ReadFile

• ReadFile reads text from an input file
• Prototype:

ReadFile PROTO,
 handle:DWORD, ; handle to file
 pBuffer:PTR BYTE, ; ptr to buffer
 nBufsize:DWORD, ; num bytes to read
 pBytesRead:PTR DWORD, ; bytes actually read
 pOverlapped:PTR DWORD ; ptr to asynch info

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

WriteFile

• WriteFile writes data to a file, using an output handle.
The handle can be the screen buffer handle, or it can
be one assigned to a text file.

• Prototype:

WriteFile PROTO,
 fileHandle:DWORD, ; output handle
 pBuffer:PTR BYTE, ; pointer to buffer
 nBufsize:DWORD, ; size of buffer
 pBytesWritten:PTR DWORD, ; num bytes written
 pOverlapped:PTR DWORD ; ptr to asynch info

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

SetFilePointer
SetFilePointer moves the position pointer of an open
file. You can use it to append data to a file, and to
perform random-access record processing:

SetFilePointer PROTO,
 handle:DWORD, ; file handle
 nDistanceLo:SDWORD, ; bytes to move pointer
 pDistanceHi:PTR SDWORD, ; ptr to bytes to move
 moveMethod:DWORD ; starting point

; Move to end of file:

INVOKE SetFilePointer,
 fileHandle,0,0,FILE_END

Example:

64-Bit Windows API

• Input and output handles are 64 bits
• Before calling a system function, reserve at least 32

bytes of shadow space by subtracting from the stack
pointer (RSP).

• Restore RSP after the system call
• Pass integers in 64-bit registers
• First four arguments should be placed in RCX, RDX,

R8, and R9 registers
• 64-bit integer values are returned in RAX

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Example: Calling GetStdHandle

.data
STD_OUTPUT_HANDLE EQU -11
consoleOutHandle QWORD ?

.code
sub rsp,40 ; reserve shadow space & align RSP
mov rcx,STD_OUTPUT_HANDLE
call GetStdHandle
mov consoleOutHandle,rax
add rsp,40

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Example: Calling WriteConsole

sub rsp, 5 * 8 ; space for 5 parameters
movr cx,rdx
call Str_length ; returns length of string in EAX
mov rcx,consoleOutHandle
mov rdx,rdx ; string pointer
mov r8, rax ; length of string
lea r9,bytesWritten
mov qword ptr [rsp + 4 * SIZEOF QWORD],0 ; (always zero)
call WriteConsoleA

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Console Window Manipulation

• Screen buffer
• Console window
• Controlling the cursor
• Controlling the text color

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Screen Buffer and Console Window

• The active screen buffer includes data displayed by
the console window.

text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text

text text text text text
text text text text text
text text text text text
text text text text text
text text text text text
text text text text text

active screen
buffer

console window

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

SetConsoleTitle

.data
titleStr BYTE "Console title",0
.code
INVOKE SetConsoleTitle, ADDR titleStr

SetConsoleTitle changes the console window's title.
Pass it a null-terminated string:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

GetConsoleScreenBufferInfo

.data
outHandle DWORD ?
consoleInfo CONSOLE_SCREEN_BUFFER_INFO <>
.code
 INVOKE GetConsoleScreenBufferInfo,
 outHandle,
 ADDR consoleInfo

GetConsoleScreenBufferInfo returns information about the
current state of the console window. It has two parameters: a
handle to the console screen, and a pointer to a structure that
is filled in by the function:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

CONSOLE_SCREEN_BUFFER_INFO

CONSOLE_SCREEN_BUFFER_INFO STRUCT
 dwSize COORD <>
 dwCursorPos COORD <>
 wAttributes WORD ?
 srWindow SMALL_RECT <>
 maxWinSize COORD <>
CONSOLE_SCREEN_BUFFER_INFO ENDS

• dwSize - size of the screen buffer (char columns and rows)
• dwCursorPos - cursor location
• wAttributes - colors of characters in console buffer
• srWindow - coords of console window relative to screen buffer
• maxWinSize - maximum size of the console window

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

SetConsoleWindowInfo

• SetConsoleWindowInfo lets you set the size and
position of the console window relative to its screen
buffer.

• Prototype:

SetConsoleWindowInfo PROTO,
 nStdHandle:DWORD, ; screen buffer handle
 bAbsolute:DWORD, ; coordinate type
 pConsoleRect:PTR SMALL_RECT ; window rectangle

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

SetConsoleScreenBufferSize

• SetConsoleScreenBufferSize lets you set the screen
buffer size to X columns by Y rows.

• Prototype:

SetConsoleScreenBufferSize PROTO,
 outHandle:DWORD, ; handle to screen buffer
 dwSize:COORD ; new screen buffer size

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

Controlling the Cursor

• GetConsoleCursorInfo
• returns the size and visibility of the console cursor

• SetConsoleCursorInfo
• sets the size and visibility of the cursor

• SetConsoleCursorPosition
• sets the X, Y position of the cursor

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

CONSOLE_CURSOR_INFO

• Structure containing information about the console’s
cursor size and visibility:

CONSOLE_CURSOR_INFO STRUCT
 dwSize DWORD ?
 bVisible DWORD ?
CONSOLE_CURSOR_INFO ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

SetConsoleTextAttribute

• Sets the foreground and background colors of all
subsequent text written to the console.

• Prototype:

SetConsoleTextAttribute PROTO,
 outHandle:DWORD, ; console output handle
 nColor:DWORD ; color attribute

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

WriteConsoleOutputAttribute

• Copies an array of attribute values to consecutive
cells of the console screen buffer, beginning at a
specified location.

• Prototype:

WriteConsoleOutputAttribute PROTO,
 outHandle:DWORD, ; output handle
 pAttribute:PTR WORD, ; write attributes
 nLength:DWORD, ; number of cells
 xyCoord:COORD, ; first cell coordinates
 lpCount:PTR DWORD ; number of cells written

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

WriteColors Program

• Creates an array of characters and an array of
attributes, one for each character

• Copies the attributes to the screen buffer
• Copies the characters to the same screen buffer cells

as the attributes
• Sample output:

View the source code
(starts in row 2, column 10)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

Time and Date Functions

• GetLocalTime, SetLocalTime
• GetTickCount, Sleep
• GetDateTime
• SYSTEMTIME Structure
• Creating a Stopwatch Timer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

GetLocalTime, SetLocalTime

• GetLocalTime returns the date and current time of
day, according to the system clock.

• SetLocalTime sets the system’s local date and time.

GetLocalTime PROTO,
 pSystemTime:PTR SYSTEMTIME

SetLocalTime PROTO,
 pSystemTime:PTR SYSTEMTIME

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

GetTickCount, Sleep

• GetTickCount function returns the number of
milliseconds that have elapsed since the system was
started.

• Sleep pauses the current program for a specified
number of milliseconds.

GetTickCount PROTO ; return value in EAX

Sleep PROTO,
 dwMilliseconds:DWORD

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

GetDateTime

The GetDateTime procedure in the Irvine32 library
calculates the number of 100-nanosecond time intervals
that have elapsed since January 1, 1601. Pass it a
pointer to an empty 64-bit FILETIME structure, which is
then filled in by the procedure:

GetDateTime PROC,
 pStartTime:PTR QWORD

FILETIME STRUCT
 loDateTime DWORD ?
 hiDateTime DWORD ?
FILETIME ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

SYSTEMTIME Structure

• SYSTEMTIME is used by date and time-related
Windows API functions:

SYSTEMTIME STRUCT
 wYear WORD ? ; year (4 digits)
 wMonth WORD ? ; month (1-12)
 wDayOfWeek WORD ? ; day of week (0-6)
 wDay WORD ? ; day (1-31)
 wHour WORD ? ; hours (0-23)
 wMinute WORD ? ; minutes (0-59)
 wSecond WORD ? ; seconds (0-59)
 wMilliseconds WORD ? ; milliseconds (0-999)
SYSTEMTIME ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Creating a Stopwatch Timer

• The Timer.asm program demonstrates a simple
stopwatch timer

• It has two important functions:
• TimerStart - receives a pointer to a doubleword, into

which it saves the current time
• TimerStop - receives a pointer to the same

doubleword, and returns the difference (in
milliseconds) between the current time and the
previously recorded time

• Calls the Win32 GetTickCount function
• View the source code

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

What's Next

• Win32 Console Programming
• Writing a Graphical Windows Application
• Dynamic Memory Allocation
• x86 Memory Management

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Writing a Graphical Windows Application

• Required Files
• POINT, RECT Structures
• MSGStruct, WNDCLASS Structures
• MessageBox Function
• WinMain, WinProc Procedures
• ErrorHandler Procedure
• Message Loop & Processing Messages
• Program Listing

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

Required Files

• make32.bat - Batch file specifically for building this
program

• WinApp.asm - Program source code
• GraphWin.inc - Include file containing structures,

constants, and function prototypes used by the
program

• kernel32.lib - Same MS-Windows API library used
earlier in this chapter

• user32.lib - Additional MS-Windows API functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

POINT and RECT Structures

• POINT - X, Y screen coordinates
• RECT - Holds the graphical coordinates of two

opposing corners of a rectangle

POINT STRUCT
 ptX DWORD ?
 ptY DWORD ?
POINT ENDS

RECT STRUCT
 left DWORD ?
 top DWORD ?
 right DWORD ?
 bottom DWORD ?
RECT ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

MSGStruct Structure

MSGStruct - holds data for MS-Windows messages
(usually passed by the system and received by your
application):

MSGStruct STRUCT
 msgWnd DWORD ?
 msgMessage DWORD ?
 msgWparam DWORD ?
 msgLparam DWORD ?
 msgTime DWORD ?
 msgPt POINT <>
MSGStruct ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

WNDCLASS Structure (1 of 2)

Each window in a program belongs to a class, and each program
defines a window class for its main window:

WNDCLASS STRUC
 style DWORD ? ; window style options
 lpfnWndProc DWORD ? ; WinProc function pointer
 cbClsExtra DWORD ? ; shared memory
 cbWndExtra DWORD ? ; number of extra bytes
 hInstance DWORD ? ; handle to current program
 hIcon DWORD ? ; handle to icon
 hCursor DWORD ? ; handle to cursor
 hbrBackground DWORD ? ; handle to background brush
 lpszMenuName DWORD ? ; pointer to menu name
 lpszClassName DWORD ? ; pointer to WinClass name
WNDCLASS ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

WNDCLASS Structure (2 of 2)

• style is a conglomerate of different style options, such as
WS_CAPTION and WS_BORDER, that control the window’s
appearance and behavior.

• lpfnWndProc is a pointer to a function (in our program) that receives
and processes event messages triggered by the user.

• cbClsExtra refers to shared memory used by all windows belonging to
the class. Can be null.

• cbWndExtra specifies the number of extra bytes to allocate following
the window instance.

• hInstance holds a handle to the current program instance.
• hIcon and hCursor hold handles to icon and cursor resources for the

current program.
• hbrBackground holds a background (color) brush.
• lpszMenuName points to a menu string.
• lpszClassName points to a null-terminated string containing the

window’s class name.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

MessageBox Function

Displays text in a box that pops up and waits for the
user to click on a button:

MessageBox PROTO,
 hWnd:DWORD,
 pText:PTR BYTE,
 pCaption:PTR BYTE,
 style:DWORD

hWnd is a handle to the current window. pText points to a null-
terminated string that will appear inside the box. pCaption points to
a null-terminated string that will appear in the box’s caption bar.
style is an integer that describes both the dialog box’s icon
(optional) and the buttons (required).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

MessageBox Example

.data
hMainWnd DWORD ?
QuestionText BYTE "Register this program now?"
QuestionTitle BYTE "Trial Period Has Expired"

.code
INVOKE MessageBox,
 hMainWnd,
 ADDR QuestionText,
 ADDR QuestionTitle,
 MB_OK + MB_ICONQUESTION

Displays a message box that shows a question,
including an OK button and a question-mark icon:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

WinMain Procedure

Every Windows application needs a startup procedure,
usually named WinMain, which is responsible for the
following tasks:
• Get a handle to the current program
• Load the program’s icon and mouse cursor
• Register the program’s main window class and identify the

procedure that will process event messages for the window

• Create the main window

• Show and update the main window
• Begin a loop that receives and dispatches messages

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

WinProc Procedure

• WinProc receives and processes all event messages
relating to a window

• Some events are initiated by clicking and dragging the mouse,
pressing keyboard keys, and so on

• WinProc decodes each message, carries out
application-oriented tasks related to the message

WinProc PROC,
 hWnd:DWORD, ; handle to the window
 localMsg:DWORD, ; message ID
 wParam:DWORD, ; parameter 1 (varies)
 lParam:DWORD ; parameter 2 (varies)

(Contents of wParam and lParam vary, depending on the message.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

Sample WinProc Messages

• In the example program from this chapter, the
WinProc procedure handles three specific messages:
• WM_LBUTTONDOWN, generated when the user

presses the left mouse button
• WM_CREATE, indicates that the main window was just

created
• WM_CLOSE, indicates that the application’s main

window is about to close

(many other messages are possible)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

ErrorHandler Procedure

• The ErrorHandler procedure has several important
tasks to perform:
• Call GetLastError to retrieve the system error number
• Call FormatMessage to retrieve the appropriate

system-formatted error message string
• Call MessageBox to display a popup message box

containing the error message string
• Call LocalFree to free the memory used by the error

message string

(sample)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

ErrorHandler Sample

INVOKE GetLastError ; Returns message ID in EAX
mov messageID,eax

; Get the corresponding message string.
INVOKE FormatMessage, FORMAT_MESSAGE_ALLOCATE_BUFFER + \
 FORMAT_MESSAGE_FROM_SYSTEM, NULL, messageID, NULL,
 ADDR pErrorMsg, NULL, NULL

; Display the error message.
INVOKE MessageBox, NULL, pErrorMsg, ADDR ErrorTitle,
 MB_ICONERROR + MB_OK

; Free the error message string.
INVOKE LocalFree, pErrorMsg

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

Message Loop

Message_Loop:
 ; Get next message from the queue.
 INVOKE GetMessage, ADDR msg, NULL,NULL,NULL

 ; Quit if no more messages.
 .IF eax == 0
 jmp Exit_Program
 .ENDIF

 ; Relay the message to the program's WinProc.
 INVOKE DispatchMessage, ADDR msg

 jmp Message_Loop

In WinMain, the message loop receives and dispatches
(relays) messages:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

Processing Messages

WinProc PROC, hWnd:DWORD, localMsg:DWORD,

 wParam:DWORD, lParam:DWORD

 mov eax, localMsg

 .IF eax == WM_LBUTTONDOWN ; mouse button?

 INVOKE MessageBox, hWnd, ADDR PopupText,

 ADDR PopupTitle, MB_OK

 jmp WinProcExit

 .ELSEIF eax == WM_CREATE ; create window?

 INVOKE MessageBox, hWnd, ADDR AppLoadMsgText,

 ADDR AppLoadMsgTitle, MB_OK

 jmp WinProcExit

 (etc.)

WinProc receives each message and decides what to do with it:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

Program Listing

• View the program listing (WinApp.asm)
• Run the program

When linking the program, remember to replace

/SUBSYSTEM:CONSOLE

with: /SUBSYSTEM:WINDOWS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

What's Next

• Win32 Console Programming
• Writing a Graphical Windows Application
• Dynamic Memory Allocation
• x86 Memory Management

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

Dynamic Memory Allocation

• Reserving memory at runtime for objects
• aka heap allocation
• standard in high-level languages (C++, Java)

• Heap manager
• allocates large blocks of memory
• maintains free list of pointers to smaller blocks
• manages requests by programs for storage

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 66

Windows Heap-Related Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

Sample Code

• Get a handle to the program's existing heap:

.data
hHeap HANDLE ?

.code
INVOKE GetProcessHeap
.IF eax == NULL ; cannot get handle
 jmp quit
.ELSE
 mov hHeap,eax ; handle is OK
.ENDIF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 68

Sample Code

• Allocate block of memory from existing heap:

.data
hHeap HANDLE ? ; heap handle
pArray DWORD ? ; pointer to array

.code
INVOKE HeapAlloc, hHeap, HEAP_ZERO_MEMORY, 1000
.IF eax == NULL
 mWrite "HeapAlloc failed"
 jmp quit
.ELSE
 mov pArray,eax
.ENDIF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 69

Sample Code

• Free a block of memory previously created by
calling HeapAlloc:

.data
hHeap HANDLE ? ; heap handle
pArray DWORD ? ; pointer to array

.code
INVOKE HeapFree,
 hHeap, ; handle to heap
 0, ; flags
 pArray ; pointer to array

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 70

Sample Programs

• Heaptest1.asm
• Allocates and fills an array of bytes

• Heaptest2.asm
• Creates a heap and allocates multiple memory blocks

until no more memory is available

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 71

What's Next

• Win32 Console Programming
• Writing a Graphical Windows Application
• Dynamic Memory Allocation
• x86 Memory Management

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 72

x86 Memory Management

• Reviewing Some Terms
• New Terms
• Translating Addresses
• Converting Logical to Linear Address
• Page Translation

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 73

Reviewing Some Terms

• Multitasking permits multiple programs (or tasks) to run at
the same time. The processor divides up its time between
all of the running programs.

• Segments are variable-sized areas of memory used by a
program containing either code or data.

• Segmentation provides a way to isolate memory segments
from each other. This permits multiple programs to run
simultaneously without interfering with each other.

• A segment descriptor is a 64-bit value that identifies and
describes a single memory segment: it contains
information about the segment’s base address, access
rights, size limit, type, and usage.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 74

New Terms

• A segment selector is a 16-bit value stored in a
segment register (CS, DS, SS, ES, FS, or GS).
• provides an indirect reference to a memory segment

• A logical address is a combination of a segment
selector and a 32-bit offset.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 75

Translating Addresses

• The x86 processor uses a one- or two-step process
to convert a variable's logical address into a unique
memory location.

• The first step combines a segment value with a
variable’s offset to create a linear address.

• The second optional step, called page translation,
converts a linear address to a physical address.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 76

Converting Logical to Linear Address
The segment
selector points to a
segment descriptor,
which contains the
base address of a
memory segment.
The 32-bit offset
from the logical
address is added to
the segment’s base
address, generating
a 32-bit linear
address.

Selector Offset

Logical address

Segment Descriptor

Descriptor table

+

GDTR/LDTR

(contains base address of
descriptor table)

Linear address

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 77

Indexing into a Descriptor Table
Each segment descriptor indexes into the program's local
descriptor table (LDT). Each table entry is mapped to a linear
address:

Logical addresses

0018 0000003A

(unused)

DRAM
SS ESP

001A0000

0002A000

0001A000

00003000

Local Descriptor Table

0010 000001B6

0008 00002CD3

LDTR register

DS
18
10

08
00

(index)

Linear address space

IP

offset

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 78

Paging (1 of 2)

• Paging makes it possible for a computer to run a
combination of programs that would not otherwise fit
into memory.

• Only part of a program must be kept in memory,
while the remaining parts are kept on disk.

• The memory used by the program is divided into
small units called pages.

• As the program runs, the processor selectively
unloads inactive pages from memory and loads other
pages that are immediately required.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 79

Paging (2 of 2)

• OS maintains page directory and page tables
• Page translation: CPU converts the linear address

into a physical address
• Page fault: occurs when a needed page is not in

memory, and the CPU interrupts the program
• OS copies the page into memory, program resumes

execution

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 80

Page Translation

A linear address is
divided into a page
directory field, page
table field, and page
frame offset. The
CPU uses all three to
calculate the physical
address.

Directory Table Offset

Directory Entry

CR3

Page Directory

Page-Table Entry

Page Table

Physical Address

Page Frame

Linear Address
10 10 12

32

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 81

Review Questions

1. Define the following terms:
 a. Multitasking.
 b. Segmentation.
2. Define the following terms:
 a. Segment selector
 b. Logical address
3. (True/False): A segment selector points to an entry in a

segment descriptor table.
4. (True/False): A segment descriptor contains the base location

of a segment.
5. (True/False): A segment selector is 32 bits.
6. (True/False): A segment descriptor does not contain segment

size information.
7. Describe a linear address.
8. How does paging relate to linear memory?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 82

Summary

• 32-bit console programs
• read from the keyboard and write plain text to the console

window using Win32 API functions
• Important functions

• ReadConsole, WriteConsole, GetStdHandle, ReadFile,
WriteFile, CreateFile, CloseHandle, SetFilePointer

• Dynamic memory allocation
• HeapAlloc, HeapFree

• x86 Memory management
• segment selectors, linear address, physical address
• segment descriptor tables
• paging, page directory, page tables, page translation

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 83

The End

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Useful Questions
	Win32 Console Programming
	Win32 Console Programs
	Classifying Console Functions
	API and SDK
	Translating Windows Data Types
	Standard Console Handles
	GetStdHandle
	Console Input
	Single-Character Input
	Excerpts from ReadChar (1 of 2)
	Excerpts from ReadChar (2 of 2)
	COORD and SMALL_RECT
	WriteConsole
	WriteConsoleOutputCharacter
	File Manipulation
	CreateFile
	CreateFile Examples (1 of 3)
	CreateFile Examples (2 of 3)
	CreateFile Examples (3 of 3)
	ReadFile
	WriteFile
	SetFilePointer
	64-Bit Windows API
	Example: Calling GetStdHandle
	Example: Calling WriteConsole
	Console Window Manipulation
	Screen Buffer and Console Window
	SetConsoleTitle
	GetConsoleScreenBufferInfo
	CONSOLE_SCREEN_BUFFER_INFO
	SetConsoleWindowInfo
	SetConsoleScreenBufferSize
	Controlling the Cursor
	CONSOLE_CURSOR_INFO
	SetConsoleTextAttribute
	WriteConsoleOutputAttribute
	WriteColors Program
	Time and Date Functions
	GetLocalTime, SetLocalTime
	GetTickCount, Sleep
	GetDateTime
	SYSTEMTIME Structure
	Creating a Stopwatch Timer
	What's Next
	Writing a Graphical Windows Application
	Required Files
	POINT and RECT Structures
	MSGStruct Structure
	WNDCLASS Structure (1 of 2)
	WNDCLASS Structure (2 of 2)
	MessageBox Function
	MessageBox Example
	WinMain Procedure
	WinProc Procedure
	Sample WinProc Messages
	ErrorHandler Procedure
	ErrorHandler Sample
	Message Loop
	Processing Messages
	Program Listing
	What's Next
	Dynamic Memory Allocation
	Windows Heap-Related Functions
	Sample Code
	Sample Code
	Sample Code
	Sample Programs
	What's Next
	x86 Memory Management
	Reviewing Some Terms
	New Terms
	Translating Addresses
	Converting Logical to Linear Address
	Indexing into a Descriptor Table
	Paging (1 of 2)
	Paging (2 of 2)
	Page Translation
	Review Questions
	Summary
	The End

