
Assembly Language for x86 Processors
7th Edition

Chapter 6: Conditional Processing

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slides prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Boolean and Comparison Instructions

• CPU Status Flags
• AND Instruction
• OR Instruction
• XOR Instruction
• NOT Instruction
• Applications
• TEST Instruction
• CMP Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Status Flags - Review

• The Zero flag is set when the result of an operation equals zero.
• The Carry flag is set when an instruction generates a result that is

too large (or too small) for the destination operand.
• The Sign flag is set if the destination operand is negative, and it is

clear if the destination operand is positive.
• The Overflow flag is set when an instruction generates an invalid

signed result (bit 7 carry is XORed with bit 6 Carry).
• The Parity flag is set when an instruction generates an even

number of 1 bits in the low byte of the destination operand.
• The Auxiliary Carry flag is set when an operation produces a carry

out from bit 3 to bit 4

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

AND Instruction

• Performs a Boolean AND operation between each
pair of matching bits in two operands

• Syntax:
AND destination, source

(same operand types as MOV)

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

AND

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

OR Instruction

• Performs a Boolean OR operation between each pair
of matching bits in two operands

• Syntax:
OR destination, source

OR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

XOR Instruction

• Performs a Boolean exclusive-OR operation between
each pair of matching bits in two operands

• Syntax:
XOR destination, source

XOR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 0

XOR

invertedunchanged

XOR is a useful way to toggle (invert) the bits in an operand.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

NOT Instruction

• Performs a Boolean NOT operation on a single
destination operand

• Syntax:
NOT destination

NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Bit-Mapped Sets

• Binary bits indicate set membership
• Efficient use of storage
• Also known as bit vectors

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Bit-Mapped Set Operations

• Set Complement
mov eax,SetX
not eax

• Set Intersection
mov eax,setX
and eax,setY

• Set Union
mov eax,setX
or eax,setY

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Applications (1 of 5)

mov al,'a' ; AL = 01100001b
and al,11011111b ; AL = 01000001b

• Task: Convert the character in AL to upper case.

• Solution: Use the AND instruction to clear bit 5.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Applications (2 of 5)

mov al,6 ; AL = 00000110b
or al,00110000b ; AL = 00110110b

• Task: Convert a binary decimal byte into its equivalent
ASCII decimal digit.

• Solution: Use the OR instruction to set bits 4 and 5.

The ASCII digit '6' = 00110110b

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Applications (3 of 5)

mov ax,40h ; BIOS segment
mov ds,ax
mov bx,17h ; keyboard flag byte
or BYTE PTR [bx],01000000b ; CapsLock on

• Task: Turn on the keyboard CapsLock key

• Solution: Use the OR instruction to set bit 6 in the keyboard
flag byte at 0040:0017h in the BIOS data area.

This code only runs in Real-address mode, and it does not
work under Windows NT, 2000, or XP.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Applications (4 of 5)

mov ax,wordVal
and ax,1 ; low bit set?
jz EvenValue ; jump if Zero flag set

• Task: Jump to a label if an integer is even.

• Solution: AND the lowest bit with a 1. If the result is Zero,
the number was even.

JZ (jump if Zero) is covered in Section 6.3.

Your turn: Write code that jumps to a label if an integer is
negative.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Applications (5 of 5)

or al,al
jnz IsNotZero ; jump if not zero

• Task: Jump to a label if the value in AL is not zero.

• Solution: OR the byte with itself, then use the JNZ (jump
if not zero) instruction.

ORing any number with itself does not change its value.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

TEST Instruction

• Performs a nondestructive AND operation between each pair of
matching bits in two operands

• No operands are modified, but the Zero flag is affected.
• Example: jump to a label if either bit 0 or bit 1 in AL is set.

test al,00000011b
jnz ValueFound

• Example: jump to a label if neither bit 0 nor bit 1 in AL is set.

test al,00000011b
jz ValueNotFound

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

CMP Instruction (1 of 3)

• Compares the destination operand to the source operand
• Nondestructive subtraction of source from destination (destination

operand is not changed)
• Syntax: CMP destination, source
• Example: destination == source

mov al,5
cmp al,5 ; Zero flag set

• Example: destination < source

mov al,4
cmp al,5 ; Carry flag set

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

CMP Instruction (2 of 3)

• Example: destination > source

mov al,6
cmp al,5 ; ZF = 0, CF = 0

(both the Zero and Carry flags are clear)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

CMP Instruction (3 of 3)

• Example: destination > source

mov al,5
cmp al,-2 ; Sign flag == Overflow flag

The comparisons shown here are performed with signed
integers.

• Example: destination < source

mov al,-1
cmp al,5 ; Sign flag != Overflow flag

Boolean Instructions in 64-Bit Mode

• 64-bit boolean instructions, for the most part, work
the same as 32-bit instructions

• If the source operand is a constant whose size is less
than 32 bits and the destination is the lower part of a
64-bit register or memory operand, all bits in the
destination operand are affected

• When the source is a 32-bit constant or register, only
the lower 32 bits of the destination operand are
affected

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

What's Next

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

Conditional Jumps

• Jumps Based On . . .
• Specific flags
• Equality
• Unsigned comparisons
• Signed Comparisons

• Applications
• Encrypting a String
• Bit Test (BT) Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

Jcond Instruction

• A conditional jump instruction branches to a label
when specific register or flag conditions are met

• Specific jumps:
JB, JC - jump to a label if the Carry flag is set
JE, JZ - jump to a label if the Zero flag is set
JS - jump to a label if the Sign flag is set
JNE, JNZ - jump to a label if the Zero flag is clear
JECXZ - jump to a label if ECX = 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

Jcond Ranges

• Prior to the 386:
• jump must be within –128 to +127 bytes from current

location counter
• x86 processors:

• 32-bit offset permits jump anywhere in memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

Jumps Based on Specific Flags

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Jumps Based on Equality

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Jumps Based on Unsigned Comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Jumps Based on Signed Comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Applications (1 of 5)

cmp eax,ebx
ja Larger

• Task: Jump to a label if unsigned EAX is greater than EBX

• Solution: Use CMP, followed by JA

cmp eax,ebx
jg Greater

• Task: Jump to a label if signed EAX is greater than EBX

• Solution: Use CMP, followed by JG

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Applications (2 of 5)

cmp eax,Val1
jbe L1 ; below or equal

• Jump to label L1 if unsigned EAX is less than or equal to Val1

cmp eax,Val1
jle L1

• Jump to label L1 if signed EAX is less than or equal to Val1

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Applications (3 of 5)

mov Large,bx
cmp ax,bx
jna Next
mov Large,ax

Next:

• Compare unsigned AX to BX, and copy the larger of the two
into a variable named Large

mov Small,ax
cmp bx,ax
jnl Next
mov Small,bx

Next:

• Compare signed AX to BX, and copy the smaller of the two
into a variable named Small

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

Applications (4 of 5)

cmp WORD PTR [esi],0
je L1

• Jump to label L1 if the memory word pointed to by ESI equals
Zero

test DWORD PTR [edi],1
jz L2

• Jump to label L2 if the doubleword in memory pointed to by
EDI is even

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Applications (5 of 5)

and al,00001011b ; clear unwanted bits
cmp al,00001011b ; check remaining bits
je L1 ; all set? jump to L1

• Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set.

• Solution: Clear all bits except bits 0, 1,and 3. Then
compare the result with 00001011 binary.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

Your turn . . .

• Write code that jumps to label L1 if either bit 4, 5, or 6
is set in the BL register.

• Write code that jumps to label L1 if bits 4, 5, and 6
are all set in the BL register.

• Write code that jumps to label L2 if AL has even
parity.

• Write code that jumps to label L3 if EAX is negative.
• Write code that jumps to label L4 if the expression

(EBX – ECX) is greater than zero.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

Encrypting a String

KEY = 239 ; can be any byte value
BUFMAX = 128
.data
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD BUFMAX

.code

mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1

The following loop uses the XOR instruction to transform every
character in a string into a new value.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

String Encryption Program

• Tasks:
• Input a message (string) from the user
• Encrypt the message
• Display the encrypted message
• Decrypt the message
• Display the decrypted message

View the Encrypt.asm program's source code. Sample output:

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs

Decrypted: Attack at dawn.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

BT (Bit Test) Instruction

• Copies bit n from an operand into the Carry flag
• Syntax: BT bitBase, n

• bitBase may be r/m16 or r/m32
• n may be r16, r32, or imm8

• Example: jump to label L1 if bit 9 is set in the AX
register:

bt AX,9 ; CF = bit 9
jc L1 ; jump if Carry

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

What's Next

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

Conditional Loop Instructions

• LOOPZ and LOOPE
• LOOPNZ and LOOPNE

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

LOOPZ and LOOPE

• Syntax:
 LOOPE destination
 LOOPZ destination

• Logic:
• ECX ← ECX – 1
• if ECX > 0 and ZF=1, jump to destination

• Useful when scanning an array for the first element
that does not match a given value.

In 32-bit mode, ECX is the loop counter register. In 16-bit real-
address mode, CX is the counter, and in 64-bit mode, RCX is the
counter.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

LOOPNZ and LOOPNE

• LOOPNZ (LOOPNE) is a conditional loop instruction
• Syntax:
 LOOPNZ destination
 LOOPNE destination
• Logic:

• ECX ← ECX – 1;
• if ECX > 0 and ZF=0, jump to destination

• Useful when scanning an array for the first element
that matches a given value.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

LOOPNZ Example

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

next:
test WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loopnz next ; continue loop
jnz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

The following code finds the first positive value in an array:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Your turn . . .

.data
array SWORD 50 DUP(?)
sentinel SWORD 0FFFFh
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: cmp WORD PTR [esi],0 ; check for zero

 (fill in your code here)

quit:

Locate the first nonzero value in the array. If none is found, let
ESI point to the sentinel value:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

. . . (solution)

.data
array SWORD 50 DUP(?)
sentinel SWORD 0FFFFh
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: cmp WORD PTR [esi],0 ; check for zero
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loope L1 ; continue loop
jz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

What's Next

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Conditional Structures

• Block-Structured IF Statements

• Compound Expressions with AND

• Compound Expressions with OR

• WHILE Loops

• Table-Driven Selection

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Block-Structured IF Statements

Assembly language programmers can easily translate logical
statements written in C++/Java into assembly language. For
example:

mov eax,op1
cmp eax,op2
jne L1
mov X,1
jmp L2

L1: mov X,2
L2:

if(op1 == op2)
 X = 1;
else
 X = 2;

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Your turn . . .

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx
ja next
mov eax,5
mov edx,6

next:

if(ebx <= ecx)
{
 eax = 5;
 edx = 6;
}

(There are multiple correct solutions to this problem.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

Your turn . . .

Implement the following pseudocode in assembly
language. All values are 32-bit signed integers:

mov eax,var1
cmp eax,var2
jle L1
mov var3,6
mov var4,7
jmp L2

L1: mov var3,10
L2:

if(var1 <= var2)
 var3 = 10;
else
{
 var3 = 6;
 var4 = 7;
}

(There are multiple correct solutions to this problem.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

Compound Expression with AND (1 of 3)

• When implementing the logical AND operator, consider that HLLs
use short-circuit evaluation

• In the following example, if the first expression is false, the second
expression is skipped:

if (al > bl) AND (bl > cl)
 X = 1;

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

Compound Expression with AND (2 of 3)

 cmp al,bl ; first expression...
 ja L1
 jmp next
L1:
 cmp bl,cl ; second expression...
 ja L2
 jmp next
L2: ; both are true
 mov X,1 ; set X to 1
next:

if (al > bl) AND (bl > cl)
 X = 1;

This is one possible implementation . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Compound Expression with AND (3 of 3)

 cmp al,bl ; first expression...
 jbe next ; quit if false
 cmp bl,cl ; second expression...
 jbe next ; quit if false
 mov X,1 ; both are true
next:

if (al > bl) AND (bl > cl)
 X = 1;

But the following implementation uses 29% less code by
reversing the first relational operator. We allow the program to
"fall through" to the second expression:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Your turn . . .

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx
ja next
cmp ecx,edx
jbe next
mov eax,5
mov edx,6

next:

if(ebx <= ecx
 && ecx > edx)
{
 eax = 5;
 edx = 6;
}

(There are multiple correct solutions to this problem.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Compound Expression with OR (1 of 2)

• When implementing the logical OR operator, consider
that HLLs use short-circuit evaluation

• In the following example, if the first expression is true,
the second expression is skipped:

if (al > bl) OR (bl > cl)
 X = 1;

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

Compound Expression with OR (2 of 2)

 cmp al,bl ; is AL > BL?
 ja L1 ; yes
 cmp bl,cl ; no: is BL > CL?
 jbe next ; no: skip next statement
L1: mov X,1 ; set X to 1
next:

We can use "fall-through" logic to keep the code as short as
possible:

if (al > bl) OR (bl > cl)
 X = 1;

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

WHILE Loops

while(eax < ebx)
 eax = eax + 1;

A WHILE loop is really an IF statement followed by the body
of the loop, followed by an unconditional jump to the top of
the loop. Consider the following example:

top: cmp eax,ebx ; check loop condition
 jae next ; false? exit loop
 inc eax ; body of loop
 jmp top ; repeat the loop
next:

This is a possible implementation:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

Your turn . . .

top: cmp ebx,val1 ; check loop condition
 ja next ; false? exit loop
 add ebx,5 ; body of loop
 dec val1
 jmp top ; repeat the loop
next:

while(ebx <= val1)
{
 ebx = ebx + 5;
 val1 = val1 - 1
}

Implement the following loop, using unsigned 32-bit integers:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

Table-Driven Selection (1 of 4)

• Table-driven selection uses a table lookup to
replace a multiway selection structure

• Create a table containing lookup values and the
offsets of labels or procedures

• Use a loop to search the table
• Suited to a large number of comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

Table-Driven Selection (2 of 4)

.data
CaseTable BYTE 'A' ; lookup value
 DWORD Process_A ; address of procedure
 EntrySize = ($ - CaseTable)
 BYTE 'B'
 DWORD Process_B
 BYTE 'C'
 DWORD Process_C
 BYTE 'D'
 DWORD Process_D

NumberOfEntries = ($ - CaseTable) / EntrySize

Step 1: create a table containing lookup values and procedure
offsets:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

Table-Driven Selection (3 of 4)

Table of Procedure Offsets:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

Table-Driven Selection (4 of 4)

 mov ebx,OFFSET CaseTable ; point EBX to the table
 mov ecx,NumberOfEntries ; loop counter

L1: cmp al,[ebx] ; match found?
 jne L2 ; no: continue
 call NEAR PTR [ebx + 1] ; yes: call the procedure
 call WriteString ; display message
 call Crlf
 jmp L3 ; and exit the loop
L2: add ebx,EntrySize ; point to next entry
 loop L1 ; repeat until ECX = 0

L3:

Step 2: Use a loop to search the table. When a match is found,
call the procedure offset stored in the current table entry:

required for
procedure pointers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

What's Next

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

Application: Finite-State Machines

• A finite-state machine (FSM) is a graph structure
that changes state based on some input. Also called
a state-transition diagram.

• We use a graph to represent an FSM, with squares
or circles called nodes, and lines with arrows
between the circles called edges.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

Application: Finite-State Machines

• A FSM is a specific instance of a more general
structure called a directed graph.

• Three basic states, represented by nodes:
• Start state
• Terminal state(s)
• Nonterminal state(s)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

Finite-State Machine

• Accepts any sequence of symbols that puts it into
an accepting (final) state

• Can be used to recognize, or validate a sequence of
characters that is governed by language rules
(called a regular expression)

• Advantages:
• Provides visual tracking of program's flow of control
• Easy to modify
• Easily implemented in assembly language

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 66

Finite-State Machine Examples
• FSM that recognizes strings beginning with 'x', followed by

letters 'a'..'y', ending with 'z':

start 'x'

'a'..'y'

'z
'

A B

C

• FSM that recognizes signed integers:

start

digit

+,-

digit digit

A B

C

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

Your Turn . . .

• Explain why the following FSM does not work as well
for signed integers as the one shown on the previous
slide:

start
digit

+,-A B

digit

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 68

Implementing an FSM

StateA:
 call Getnext ; read next char into AL
 cmp al,'+' ; leading + sign?
 je StateB ; go to State B
 cmp al,'-' ; leading - sign?
 je StateB ; go to State B
 call IsDigit ; ZF = 1 if AL = digit
 jz StateC ; go to State C
 call DisplayErrorMsg ; invalid input found
 jmp Quit

The following is code from State A in the Integer FSM:

View the Finite.asm source code.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 69

IsDigit Procedure

IsDigit PROC
 cmp al,'0' ; ZF = 0
 jb ID1
 cmp al,'9' ; ZF = 0
 ja ID1
 test ax,0 ; ZF = 1
ID1: ret
IsDigit ENDP

Receives a character in AL. Sets the Zero flag if the character
is a decimal digit.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 70

Flowchart of State A StateA

GetNext

AL = '+' ?

DisplayErrorMsg

true

AL = '-' ? true

ZF = 1 ? true

IsDigit

false

false

false

quit

StateB

StateB

StateC

State A accepts a plus or
minus sign, or a decimal
digit.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 71

Your Turn . . .

• Draw a FSM diagram for hexadecimal integer
constant that conforms to MASM syntax.

• Draw a flowchart for one of the states in your FSM.
• Implement your FSM in assembly language. Let the

user input a hexadecimal constant from the
keyboard.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 72

What's Next

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 73

Creating IF Statements

• Runtime Expressions
• Relational and Logical Operators
• MASM-Generated Code
• .REPEAT Directive
• .WHILE Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 74

Runtime Expressions

.IF eax > ebx
 mov edx,1
.ELSE
 mov edx,2
.ENDIF

• .IF, .ELSE, .ELSEIF, and .ENDIF can be used to evaluate
runtime expressions and create block-structured IF
statements.

• Examples:

• MASM generates "hidden" code for you, consisting of
code labels, CMP and conditional jump instructions.

.IF eax > ebx && eax > ecx
 mov edx,1
.ELSE
 mov edx,2
.ENDIF

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 75

Relational and Logical Operators

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 76

Signed and Unsigned Comparisons

 mov eax,6
 cmp eax,val1
 jbe @C0001
 mov result,1
@C0001:

.data

val1 DWORD 5

result DWORD ?

.code

mov eax,6

.IF eax > val1

 mov result,1

.ENDIF

Generated code:

MASM automatically generates an unsigned jump (JBE)
because val1 is unsigned.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 77

Signed and Unsigned Comparisons

 mov eax,6
 cmp eax,val1
 jle @C0001
 mov result,1
@C0001:

.data

val1 SDWORD 5

result SDWORD ?

.code

mov eax,6

.IF eax > val1

 mov result,1

.ENDIF

Generated code:

MASM automatically generates a signed jump (JLE) because
val1 is signed.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 78

Signed and Unsigned Comparisons

 mov ebx,5
 mov eax,6
 cmp eax,ebx
 jbe @C0001
 mov result,1
@C0001:

.data

result DWORD ?

.code

mov ebx,5

mov eax,6

.IF eax > ebx

 mov result,1

.ENDIF

Generated code:

MASM automatically generates an unsigned jump (JBE) when
both operands are registers . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 79

Signed and Unsigned Comparisons

 mov ebx,5
 mov eax,6
 cmp eax,ebx
 jle @C0001
 mov result,1
@C0001:

.data

result SDWORD ?

.code

mov ebx,5

mov eax,6

.IF SDWORD PTR eax > ebx

 mov result,1

.ENDIF

Generated code:

. . . unless you prefix one of the register operands with the
SDWORD PTR operator. Then a signed jump is generated.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 80

.REPEAT Directive

; Display integers 1 – 10:

mov eax,0
.REPEAT
 inc eax
 call WriteDec
 call Crlf
.UNTIL eax == 10

Executes the loop body before testing the loop condition
associated with the .UNTIL directive.

Example:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 81

.WHILE Directive

; Display integers 1 – 10:

mov eax,0
.WHILE eax < 10
 inc eax
 call WriteDec
 call Crlf
.ENDW

Tests the loop condition before executing the loop body The
.ENDW directive marks the end of the loop.

Example:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 82

Summary

• Bitwise instructions (AND, OR, XOR, NOT, TEST)
• manipulate individual bits in operands

• CMP – compares operands using implied subtraction
• sets condition flags

• Conditional Jumps & Loops
• equality: JE, JNE
• flag values: JC, JZ, JNC, JP, ...
• signed: JG, JL, JNG, ...
• unsigned: JA, JB, JNA, ...
• LOOPZ, LOOPNZ, LOOPE, LOOPNE

• Flowcharts – logic diagramming tool
• Finite-state machine – tracks state changes at runtime

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 83

4C 6F 70 70 75 75 6E

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Boolean and Comparison Instructions
	Status Flags - Review
	AND Instruction
	OR Instruction
	XOR Instruction
	NOT Instruction
	Bit-Mapped Sets
	Bit-Mapped Set Operations
	Applications (1 of 5)
	Applications (2 of 5)
	Applications (3 of 5)
	Applications (4 of 5)
	Applications (5 of 5)
	TEST Instruction
	CMP Instruction (1 of 3)
	CMP Instruction (2 of 3)
	CMP Instruction (3 of 3)
	Boolean Instructions in 64-Bit Mode
	What's Next
	Conditional Jumps
	Jcond Instruction
	Jcond Ranges
	Jumps Based on Specific Flags
	Jumps Based on Equality
	Jumps Based on Unsigned Comparisons
	Jumps Based on Signed Comparisons
	Applications (1 of 5)
	Applications (2 of 5)
	Applications (3 of 5)
	Applications (4 of 5)
	Applications (5 of 5)
	Your turn . . .
	Encrypting a String
	String Encryption Program
	BT (Bit Test) Instruction
	What's Next
	Conditional Loop Instructions
	LOOPZ and LOOPE
	LOOPNZ and LOOPNE
	LOOPNZ Example
	Your turn . . .
	. . . (solution)
	What's Next
	Conditional Structures
	Block-Structured IF Statements
	Your turn . . .
	Your turn . . .
	Compound Expression with AND (1 of 3)
	Compound Expression with AND (2 of 3)
	Compound Expression with AND (3 of 3)
	Your turn . . .
	Compound Expression with OR (1 of 2)
	Compound Expression with OR (2 of 2)
	WHILE Loops
	Your turn . . .
	Table-Driven Selection (1 of 4)
	Table-Driven Selection (2 of 4)
	Table-Driven Selection (3 of 4)
	Table-Driven Selection (4 of 4)
	What's Next
	Application: Finite-State Machines
	Application: Finite-State Machines
	Finite-State Machine
	Finite-State Machine Examples
	Your Turn . . .
	Implementing an FSM
	IsDigit Procedure
	Flowchart of State A
	Your Turn . . .
	What's Next
	Creating IF Statements
	Runtime Expressions
	Relational and Logical Operators
	Signed and Unsigned Comparisons
	Signed and Unsigned Comparisons
	Signed and Unsigned Comparisons
	Signed and Unsigned Comparisons
	.REPEAT Directive
	.WHILE Directive
	Summary
	4C 6F 70 70 75 75 6E

