
Assembly Language for x86 Processors
7th Edition

Chapter 5: Procedures

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slides prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Stack Operations
• Defining and Using Procedures
• Linking to an External Library
• The Irvine32 Library
• 64-Bit Assembly Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Stack Operations

• Runtime Stack
• PUSH Operation
• POP Operation
• PUSH and POP Instructions
• Using PUSH and POP
• Example: Reversing a String
• Related Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Runtime Stack

• Imagine a stack of plates . . .
• plates are only added to the top
• plates are only removed from the top
• LIFO structure

1
2
3
4
5
6
7
8
9

10 top

bottom

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Runtime Stack

• Managed by the CPU, using two registers
• SS (stack segment)
• ESP (stack pointer) *

* SP in Real-address mode

00000006 ESP00001000

Offset

00000FF8

00000FF4

00000FF0

00000FFC

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

PUSH Operation (1 of 2)

• A 32-bit push operation decrements the stack pointer
by 4 and copies a value into the location pointed to
by the stack pointer.

00000006 00000006

ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

000000A5

ESP00001000

BEFORE

00000FFC

00000FF8

00000FF4

00000FF0

AFTER

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

PUSH Operation (2 of 2)

• Same stack after pushing two more integers:

00000006

ESP

00001000

Offset

00000FFC

00000FF8

00000FF4

00000FF0

000000A5

00000001

00000002

The stack grows downward. The area below ESP is always
available (unless the stack has overflowed).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

POP Operation

• Copies value at stack[ESP] into a register or variable.
• Adds n to ESP, where n is either 2 or 4.

• value of n depends on the attribute of the operand receiving the
data

BEFORE AFTER

00000006

000000A5

00000001

00000002 ESP

00000006

000000A5

00000001 ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

00001000

00000FFC

00000FF8

00000FF4

00000FF0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

PUSH and POP Instructions

• PUSH syntax:
• PUSH r/m16
• PUSH r/m32
• PUSH imm32

• POP syntax:
• POP r/m16
• POP r/m32

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Using PUSH and POP

push esi ; push registers
push ecx
push ebx

mov esi,OFFSET dwordVal ; display some memory
mov ecx,LENGTHOF dwordVal
mov ebx,TYPE dwordVal
call DumpMem

pop ebx ; restore registers
pop ecx
pop esi

Save and restore registers when they contain important values.
PUSH and POP instructions occur in the opposite order.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Example: Nested Loop

 mov ecx,100 ; set outer loop count
L1: ; begin the outer loop
 push ecx ; save outer loop count

 mov ecx,20 ; set inner loop count
L2: ; begin the inner loop
 ;
 ;
 loop L2 ; repeat the inner loop

 pop ecx ; restore outer loop count
 loop L1 ; repeat the outer loop

When creating a nested loop, push the outer loop counter
before entering the inner loop:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Example: Reversing a String

• Use a loop with indexed addressing
• Push each character on the stack
• Start at the beginning of the string, pop the stack in reverse

order, insert each character back into the string
• Source code

• Q: Why must each character be put in EAX before it is pushed?

Because only word (16-bit) or doubleword (32-bit) values
can be pushed on the stack.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Your turn . . .

• Using the String Reverse program as a starting
point,

• #1: Modify the program so the user can input a string
containing between 1 and 50 characters.

• #2: Modify the program so it inputs a list of 32-bit integers
from the user, and then displays the integers in reverse
order.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Related Instructions

• PUSHFD and POPFD
• push and pop the EFLAGS register

• PUSHAD pushes the 32-bit general-purpose
registers on the stack
• order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

• POPAD pops the same registers off the stack in
reverse order
• PUSHA and POPA do the same for 16-bit registers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Your Turn . . .

• Write a program that does the following:
• Assigns integer values to EAX, EBX, ECX, EDX, ESI,

and EDI
• Uses PUSHAD to push the general-purpose registers

on the stack
• Using a loop, your program should pop each integer

from the stack and display it on the screen

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

What's Next

• Stack Operations
• Defining and Using Procedures
• Linking to an External Library
• The Irvine32 Library
• 64-Bit Assembly Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

Defining and Using Procedures

• Creating Procedures
• Documenting Procedures
• Example: SumOf Procedure
• CALL and RET Instructions
• Nested Procedure Calls
• Local and Global Labels
• Procedure Parameters
• Flowchart Symbols
• USES Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

Creating Procedures

• Large problems can be divided into smaller tasks to
make them more manageable

• A procedure is the ASM equivalent of a Java or C++
function

• Following is an assembly language procedure named
sample:

sample PROC
.
.
ret

sample ENDP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

Documenting Procedures

• A description of all tasks accomplished by the procedure.
• Receives: A list of input parameters; state their usage and

requirements.
• Returns: A description of values returned by the procedure.
• Requires: Optional list of requirements called preconditions that

must be satisfied before the procedure is called.

Suggested documentation for each procedure:

If a procedure is called without its preconditions satisfied, it will
probably not produce the expected output.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Example: SumOf Procedure

;---
SumOf PROC
;
; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be
; signed or unsigned.
; Returns: EAX = sum, and the status flags (Carry,
; Overflow, etc.) are changed.
; Requires: nothing
;---

add eax,ebx
add eax,ecx
ret

SumOf ENDP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

CALL and RET Instructions

• The CALL instruction calls a procedure
• pushes offset of next instruction on the stack
• copies the address of the called procedure into EIP

• The RET instruction returns from a procedure
• pops top of stack into EIP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

CALL-RET Example (1 of 2)

main PROC
00000020 call MySub
00000025 mov eax,ebx
.
.

main ENDP

MySub PROC

00000040 mov eax,edx
.
.
ret

MySub ENDP

0000025 is the offset of the
instruction immediately
following the CALL
instruction

00000040 is the offset of
the first instruction inside
MySub

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

CALL-RET Example (2 of 2)

00000025 ESP

EIP

00000040The CALL instruction
pushes 00000025 onto
the stack, and loads
00000040 into EIP

00000025 ESP

EIP

00000025The RET instruction
pops 00000025 from the
stack into EIP

(stack shown before RET executes)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

Nested Procedure Calls
main PROC
 .
 .
 call Sub1
 exit
main ENDP

Sub1 PROC
 .
 .
 call Sub2
 ret
Sub1 ENDP

Sub2 PROC
 .
 .
 call Sub3
 ret
Sub2 ENDP

Sub3 PROC
 .
 .
 ret
Sub3 ENDP

(ret to main)

(ret to Sub1)

(ret to Sub2) ESP

By the time Sub3 is called, the
stack contains all three return
addresses:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

Local and Global Labels

main PROC
 jmp L2 ; error
L1:: ; global label
 exit
main ENDP

sub2 PROC
L2: ; local label
 jmp L1 ; ok
 ret
sub2 ENDP

A local label is visible only to statements inside the same
procedure. A global label is visible everywhere.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Procedure Parameters (1 of 3)

• A good procedure might be usable in many
different programs
• but not if it refers to specific variable names

• Parameters help to make procedures flexible
because parameter values can change at runtime

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Procedure Parameters (2 of 3)

ArraySum PROC
mov esi,0 ; array index
mov eax,0 ; set the sum to zero

 mov ecx,LENGTHOF myarray ; set number of elements

L1: add eax,myArray[esi] ; add each integer to sum

add esi,4 ; point to next integer
loop L1 ; repeat for array size

mov theSum,eax ; store the sum

 ret
ArraySum ENDP

The ArraySum procedure calculates the sum of an array. It
makes two references to specific variable names:

What if you wanted to calculate the sum of two or three arrays
within the same program?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Procedure Parameters (3 of 3)

ArraySum PROC
; Receives: ESI points to an array of doublewords,
; ECX = number of array elements.
; Returns: EAX = sum
;---

mov eax,0 ; set the sum to zero

L1: add eax,[esi] ; add each integer to sum

add esi,4 ; point to next integer
loop L1 ; repeat for array size

 ret
ArraySum ENDP

This version of ArraySum returns the sum of any doubleword
array whose address is in ESI. The sum is returned in EAX:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

USES Operator
• Lists the registers that will be preserved

ArraySum PROC USES esi ecx
 mov eax,0 ; set the sum to zero
 etc.

MASM generates the code shown in gold:

ArraySum PROC
 push esi
 push ecx
 .
 .
 pop ecx
 pop esi
 ret
ArraySum ENDP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

When not to push a register

SumOf PROC ; sum of three integers
push eax ; 1
add eax,ebx ; 2
add eax,ecx ; 3
pop eax ; 4
ret

SumOf ENDP

The sum of the three registers is stored in EAX on line (3), but
the POP instruction replaces it with the starting value of EAX on
line (4):

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

What's Next

• Stack Operations
• Defining and Using Procedures
• Linking to an External Library
• The Irvine32 Library
• 64-Bit Assembly Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

Linking to an External Library

• What is a Link Library?
• How the Linker Works

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

What is a Link Library?

• A file containing procedures that have been compiled
into machine code
• constructed from one or more OBJ files

• To build a library, . . .
• start with one or more ASM source files
• assemble each into an OBJ file
• create an empty library file (extension .LIB)
• add the OBJ file(s) to the library file, using the

Microsoft LIB utility

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

How The Linker Works

• Your programs link to Irvine32.lib using the linker command
inside a batch file named make32.bat.

• Notice the two LIB files: Irvine32.lib, and kernel32.lib
• the latter is part of the Microsoft Win32 Software

Development Kit (SDK)

Your program

kernel32.lib

kernel32.dll

Irvine32.lib
links

executes

to
links to

can link to

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

What's Next

• Stack Operations
• Defining and Using Procedures
• Linking to an External Library
• The Irvine32 Library
• 64-Bit Assembly Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

Calling Irvine32 Library Procedures

INCLUDE Irvine32.inc
.code
 mov eax,1234h ; input argument
 call WriteHex ; show hex number
 call Crlf ; end of line

• Call each procedure using the CALL instruction. Some
procedures require input arguments. The INCLUDE directive
copies in the procedure prototypes (declarations).

• The following example displays "1234" on the console:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Library Procedures - Overview (1 of 4)

CloseFile – Closes an open disk file
Clrscr - Clears console, locates cursor at upper left corner
CreateOutputFile - Creates new disk file for writing in output mode
Crlf - Writes end of line sequence to standard output
Delay - Pauses program execution for n millisecond interval
DumpMem - Writes block of memory to standard output in hex

DumpRegs – Displays general-purpose registers and flags (hex)
GetCommandtail - Copies command-line args into array of bytes
GetDateTime – Gets the current date and time from the system
GetMaxXY - Gets number of cols, rows in console window buffer
GetMseconds - Returns milliseconds elapsed since midnight

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

Library Procedures - Overview (2 of 4)

GetTextColor - Returns active foreground and background text colors in
the console window
Gotoxy - Locates cursor at row and column on the console
IsDigit - Sets Zero flag if AL contains ASCII code for decimal digit (0–9)
MsgBox, MsgBoxAsk – Display popup message boxes
OpenInputFile – Opens existing file for input
ParseDecimal32 – Converts unsigned integer string to binary
ParseInteger32 - Converts signed integer string to binary
Random32 - Generates 32-bit pseudorandom integer in the range 0 to
FFFFFFFFh
Randomize - Seeds the random number generator
RandomRange - Generates a pseudorandom integer within a specified
range
ReadChar - Reads a single character from standard input

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

Library Procedures - Overview (3 of 4)

ReadDec - Reads 32-bit unsigned decimal integer from keyboard
ReadFromFile – Reads input disk file into buffer
ReadHex - Reads 32-bit hexadecimal integer from keyboard
ReadInt - Reads 32-bit signed decimal integer from keyboard
ReadKey – Reads character from keyboard input buffer

ReadString - Reads string from stdin, terminated by [Enter]
SetTextColor - Sets foreground/background colors of all subsequent text
output to the console
Str_compare – Compares two strings

Str_copy – Copies a source string to a destination string
Str_length – Returns the length of a string in EAX
Str_trim - Removes unwanted characters from a string.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

Library Procedures - Overview (4 of 4)

Str_ucase - Converts a string to uppercase letters.
WaitMsg - Displays message, waits for Enter key to be pressed
WriteBin - Writes unsigned 32-bit integer in ASCII binary format.
WriteBinB – Writes binary integer in byte, word, or doubleword format
WriteChar - Writes a single character to standard output
WriteDec - Writes unsigned 32-bit integer in decimal format
WriteHex - Writes an unsigned 32-bit integer in hexadecimal format
WriteHexB – Writes byte, word, or doubleword in hexadecimal format
WriteInt - Writes signed 32-bit integer in decimal format

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

Library Procedures - Overview (5 of 4)

WriteStackFrame - Writes the current procedure’s stack frame to the
console.
WriteStackFrameName - Writes the current procedure’s name and
stack frame to the console.
WriteString - Writes null-terminated string to console window
WriteToFile - Writes buffer to output file
WriteWindowsMsg - Displays most recent error message generated
by MS-Windows

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

Example 1

.code
 call Clrscr
 mov eax,500
 call Delay
 call DumpRegs

Clear the screen, delay the program for 500 milliseconds, and
dump the registers and flags.

EAX=00000613 EBX=00000000 ECX=000000FF EDX=00000000
ESI=00000000 EDI=00000100 EBP=0000091E ESP=000000F6
EIP=00401026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0

Sample output:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Example 2

.data
str1 BYTE "Assembly language is easy!",0

.code
 mov edx,OFFSET str1
 call WriteString
 call Crlf

Display a null-terminated string and move the cursor to the
beginning of the next screen line.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

Example 2a

.data
str1 BYTE "Assembly language is easy!",0Dh,0Ah,0

.code
 mov edx,OFFSET str1
 call WriteString

Display a null-terminated string and move the cursor to the
beginning of the next screen line (use embedded CR/LF)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

Example 3

IntVal = 35
.code
 mov eax,IntVal
 call WriteBin ; display binary
 call Crlf
 call WriteDec ; display decimal
 call Crlf
 call WriteHex ; display hexadecimal
 call Crlf

Display an unsigned integer in binary, decimal, and hexadecimal,
each on a separate line.

0000 0000 0000 0000 0000 0000 0010 0011
35
23

Sample output:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Example 4

.data
fileName BYTE 80 DUP(0)

.code
 mov edx,OFFSET fileName
 mov ecx,SIZEOF fileName – 1
 call ReadString

Input a string from the user. EDX points to the string and ECX
specifies the maximum number of characters the user is
permitted to enter.

A null byte is automatically appended to the string.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Example 5

.code
 mov ecx,10 ; loop counter

L1: mov eax,100 ; ceiling value
 call RandomRange ; generate random int
 call WriteInt ; display signed int
 call Crlf ; goto next display line
 loop L1 ; repeat loop

Generate and display ten pseudorandom signed integers in the
range 0 – 99. Pass each integer to WriteInt in EAX and display
it on a separate line.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Example 6

.data
str1 BYTE "Color output is easy!",0

.code
 mov eax,yellow + (blue * 16)
 call SetTextColor
 mov edx,OFFSET str1
 call WriteString
 call Crlf

Display a null-terminated string with yellow characters on a blue
background.

The background color is multiplied by 16 before being added to the
foreground color.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

What's Next

• Stack Operations
• Defining and Using Procedures
• Linking to an External Library
• The Irvine32 Library
• 64-Bit Assembly Programming

64-Bit Assembly Programming

• The Irvine64 Library
• Calling 64-Bit Subroutines
• The x64 Calling Convention

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

The Irvine64 Library

• Crlf: Writes an end-of-line sequence to the console.
• Random64: Generates a 64-bit pseudorandom integer.
• Randomize: Seeds the random number generator with a unique

value.
• ReadInt64: Reads a 64-bit signed integer from the keyboard.
• ReadString: Reads a string from the keyboard.
• Str_compare: Compares two strings in the same way as the

CMP instruction.
• Str_copy: Copies a source string to a target location.
• Str_length: Returns the length of a null-terminated string in RAX.
• WriteInt64: Displays the contents in the RAX register as a 64-bit

signed decimal integer.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

The Irvine64 Library (cont'd)

• WriteHex64: Displays the contents of the RAX register as a 64-
bit hexadecimal integer.

• WriteHexB: Displays the contents of the RAX register as an 8-bit
hexadecimal integer .

• WriteString: Displays a null-terminated ASCII string.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

Calling 64-Bit Subroutines

• Place the first four parameters in registers
• Add PROTO directives at the top of your program

• examples:

ExitProcess PROTO ; located in the Windows API
WriteHex64 PROTO ; located in the Irvine64 library

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

The x64 Calling Convention

• Must use this with the 64-bit Windows API
• CALl instruction subtracts 8 from RSP
• First four parameters must be placed in RCX, RDX,

R8, and R9
• Caller must allocate at least 32 bytes of shadow

space on the stack
• When calling a subroutine, the stack pointer must be

aligned on a 16-byte boundary.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

See the CallProc_64.asm example program.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

Summary

• Procedure – named block of executable code
• Runtime stack – LIFO structure

• holds return addresses, parameters, local variables
• PUSH – add value to stack
• POP – remove value from stack

• Use the Irvine32 library for all standard I/O and data
conversion
• Want to learn more? Study the library source code in

the c:\Irvine\Examples\Lib32 folder

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

55 64 67 61 6E 67 65 6E

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Stack Operations
	Runtime Stack
	Runtime Stack
	PUSH Operation (1 of 2)
	PUSH Operation (2 of 2)
	POP Operation
	PUSH and POP Instructions
	Using PUSH and POP
	Example: Nested Loop
	Example: Reversing a String
	Your turn . . .
	Related Instructions
	Your Turn . . .
	What's Next
	Defining and Using Procedures
	Creating Procedures
	Documenting Procedures
	Example: SumOf Procedure
	CALL and RET Instructions
	CALL-RET Example (1 of 2)
	CALL-RET Example (2 of 2)
	Nested Procedure Calls
	Local and Global Labels
	Procedure Parameters (1 of 3)
	Procedure Parameters (2 of 3)
	Procedure Parameters (3 of 3)
	USES Operator
	When not to push a register
	What's Next
	Linking to an External Library
	What is a Link Library?
	How The Linker Works
	What's Next
	Calling Irvine32 Library Procedures
	Library Procedures - Overview (1 of 4)
	Library Procedures - Overview (2 of 4)
	Library Procedures - Overview (3 of 4)
	Library Procedures - Overview (4 of 4)
	Library Procedures - Overview (5 of 4)
	Example 1
	Example 2
	Example 2a
	Example 3
	Example 4
	Example 5
	Example 6
	What's Next
	64-Bit Assembly Programming
	The Irvine64 Library
	The Irvine64 Library (cont'd)
	Calling 64-Bit Subroutines
	The x64 Calling Convention
	Summary
	55 64 67 61 6E 67 65 6E

