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Chapter Overview 

• Basic Elements of Assembly Language 
• Example: Adding and Subtracting Integers 
• Assembling, Linking, and Running Programs 
• Defining Data 
• Symbolic Constants 
• 64-Bit Programming 
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Basic Elements of Assembly Language 

• Integer constants 
• Integer expressions 
• Character and string constants 
• Reserved words and identifiers 
• Directives and instructions 
• Labels 
• Mnemonics and Operands 
• Comments 
• Examples 
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Integer Constants 

• Optional leading + or – sign 
• binary, decimal, hexadecimal, or octal digits 
• Common radix characters: 

• h – hexadecimal 
• d – decimal 
• b – binary 
• r – encoded real 
 

Examples: 30d, 6Ah, 42, 1101b 
Hexadecimal beginning with letter: 0A5h 
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Integer Expressions 

• Operators and precedence levels: 
 
 
 
 
 

• Examples: 
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Character and String Constants 

• Enclose character in single or double quotes 
• 'A', "x" 
• ASCII character = 1 byte 

• Enclose strings in single or double quotes 
• "ABC" 
• 'xyz' 
• Each character occupies a single byte 

• Embedded quotes: 
• 'Say "Goodnight," Gracie' 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7 

Reserved Words and Identifiers 

• Reserved words cannot be used as identifiers 
• Instruction mnemonics, directives, type attributes, 

operators, predefined symbols 
• See MASM reference in Appendix A 

• Identifiers 
• 1-247 characters, including digits 
• not case sensitive 
• first character must be a letter, _, @, ?, or $ 
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Directives 

• Commands that are recognized and acted 
upon by the assembler 
• Not part of the Intel instruction set 
• Used to declare code, data areas, select 

memory model, declare procedures, etc. 
• not case sensitive 

• Different assemblers have different directives 
• NASM not the same as MASM, for example 
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Instructions 

• Assembled into machine code by assembler 
• Executed at runtime by the CPU 
• We use the Intel IA-32 instruction set 
• An instruction contains: 

• Label  (optional) 
• Mnemonic (required) 
• Operand (depends on the instruction) 
• Comment (optional) 
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Labels 

• Act as place markers 
• marks the address (offset) of code and data 

• Follow identifer rules 
• Data label 

• must be unique 
• example:  myArray  (not followed by colon) 

• Code label 
• target of jump and loop instructions 
• example:   L1:   (followed by colon) 
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Mnemonics and Operands 

• Instruction Mnemonics 
• memory aid 
• examples: MOV, ADD, SUB, MUL, INC, DEC 

• Operands 
• constant 
• constant expression 
• register 
• memory (data label) 

 
Constants and constant expressions are often called 

immediate values 
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Comments 
• Comments are good! 

• explain the program's purpose 
• when it was written, and by whom 
• revision information 
• tricky coding techniques 
• application-specific explanations 

• Single-line comments 
• begin with semicolon (;) 

• Multi-line comments 
• begin with COMMENT directive and a programmer-

chosen character 
• end with the same programmer-chosen character 
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Instruction Format Examples 

• No operands 
• stc   ; set Carry flag 

• One operand 
• inc eax   ; register 
• inc myByte  ; memory 

• Two operands 
• add ebx,ecx  ; register, register 
• sub myByte,25  ; memory, constant 
• add eax,36 * 25  ; register, constant-expression
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What's Next 

• Basic Elements of Assembly Language 
• Example: Adding and Subtracting Integers 
• Assembling, Linking, and Running Programs 
• Defining Data 
• Symbolic Constants 
• 64-Bit Programming 
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Example: Adding and Subtracting Integers 

; AddTwo.asm – adds two 32-bit integers 
 
.386 
.model flat,stdcall 
.stack 4096 
ExitProcess PROTO, dwExitCode:DWORD 
.code 
main PROC 
 mov  eax,5     ; move 5 to the EAX register 
 add  eax,6     ; add  6 to the EAX register 
 
 INVOKE ExitProcess,0 
main ENDP 
END main 
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Example Output 

Showing registers and flags in the debugger: 

EAX=00030000  EBX=7FFDF000  ECX=00000101  EDX=FFFFFFFF 

ESI=00000000  EDI=00000000  EBP=0012FFF0  ESP=0012FFC4 

EIP=00401024  EFL=00000206  CF=0  SF=0  ZF=0  OF=0 
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Suggested Coding Standards  (1 of 2) 

• Some approaches to capitalization 
• capitalize nothing 
• capitalize everything 
• capitalize all reserved words, including instruction 

mnemonics and register names 
• capitalize only directives and operators 

• Other suggestions 
• descriptive identifier names 
• spaces surrounding arithmetic operators 
• blank lines between procedures 
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Suggested Coding Standards  (2 of 2) 

• Indentation and spacing 
• code and data labels – no indentation 
• executable instructions – indent 4-5 spaces 
• comments: right side of page, aligned vertically 
• 1-3 spaces between instruction and its operands 

• ex:   mov  ax,bx 
• 1-2 blank lines between procedures 
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Required Coding Standards 

• (to be filled in by the professor) 
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Program Template 

; Program Template           (Template.asm) 
 
; Program Description: 
; Author: 
; Creation Date: 
; Revisions:  
; Date:              Modified by: 
 
.386 
.model flat,stdcall 
.stack 4096 
ExitProcess PROTO, dwExitCode:DWORD 
.data 
; declare variables here 
.code 
main PROC 
 ; write your code here 
 INVOKE ExitProcess,0 
main ENDP 
; (insert additional procedures here) 
END main 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21 

What's Next 

• Basic Elements of Assembly Language 
• Example: Adding and Subtracting Integers 
• Assembling, Linking, and Running Programs 
• Defining Data 
• Symbolic Constants 
• 64-Bit Programming 
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Assembling, Linking, and Running Programs 

• Assemble-Link-Execute Cycle 
• Listing File 
• Map File 
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Assemble-Link Execute Cycle 

• The following diagram describes the steps from creating a 
source program through executing the compiled program. 

• If the source code is modified, Steps 2 through 4 must be 
repeated. 

Source
File

Object
File

Listing
File

Link
Library

Executable
File

Map
File

Output

Step 1: text editor

Step 2:
assembler

Step 3:
linker

Step 4:
OS loader
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Listing File 

• Use it to see how your program is compiled 
• Contains  

• source code 
• addresses 
• object code (machine language) 
• segment names 
• symbols (variables, procedures, and constants) 
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What's Next 

• Basic Elements of Assembly Language 
• Example: Adding and Subtracting Integers 
• Assembling, Linking, and Running Programs 
• Defining Data 
• Symbolic Constants 
• 64-Bit Programming 
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Defining Data 

• Intrinsic Data Types 
• Data Definition Statement 
• Defining BYTE and SBYTE Data 
• Defining WORD and SWORD Data 
• Defining DWORD and SDWORD Data 
• Defining QWORD Data 
• Defining TBYTE Data 
• Defining Real Number Data 
• Little Endian Order 
• Adding Variables to the AddSub Program 
• Declaring Uninitialized Data 
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Intrinsic Data Types (1 of 2) 

• BYTE, SBYTE 
• 8-bit unsigned integer; 8-bit signed integer 

• WORD, SWORD 
• 16-bit unsigned & signed integer 

• DWORD, SDWORD 
• 32-bit unsigned & signed integer 

• QWORD 
• 64-bit integer 

• TBYTE 
• 80-bit integer 
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Intrinsic Data Types (2 of 2) 

• REAL4 
• 4-byte IEEE short real 

• REAL8 
• 8-byte IEEE long real 

• REAL10 
• 10-byte IEEE extended real 
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Data Definition Statement 

• A data definition statement sets aside storage in memory for a 
variable. 

• May optionally assign a name (label) to the data 
• Syntax: 

[name] directive initializer [,initializer] . . . 
 
 
 value1 BYTE 10 
 

• All initializers become binary data in memory 
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Defining BYTE and SBYTE Data 

value1 BYTE 'A' ; character constant 

value2 BYTE 0 ; smallest unsigned byte 

value3 BYTE 255 ; largest unsigned byte 

value4 SBYTE -128 ; smallest signed byte 

value5 SBYTE +127 ; largest signed byte 

value6 BYTE ? ; uninitialized byte 

Each of the following defines a single byte of storage: 

• MASM does not prevent you from initializing a BYTE with a 
negative value, but it's considered poor style. 

• If you declare a SBYTE variable, the Microsoft debugger will 
automatically display its value in decimal with a leading sign. 
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Defining Byte Arrays 

list1 BYTE 10,20,30,40 

list2 BYTE 10,20,30,40 

      BYTE 50,60,70,80 

      BYTE 81,82,83,84 

list3 BYTE ?,32,41h,00100010b 

list4 BYTE 0Ah,20h,‘A’,22h 

Examples that use multiple initializers: 
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Defining Strings  (1 of 3) 

• A string is implemented as an array of characters 
• For convenience, it is usually enclosed in quotation marks 
• It often will be null-terminated 

• Examples: 

str1 BYTE "Enter your name",0 
str2 BYTE 'Error: halting program',0 
str3 BYTE 'A','E','I','O','U' 
greeting  BYTE "Welcome to the Encryption Demo program " 
          BYTE "created by Kip Irvine.",0 
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Defining Strings  (2 of 3) 

• To continue a single string across multiple lines, end 
each line with a comma: 

menu BYTE "Checking Account",0dh,0ah,0dh,0ah, 
 "1. Create a new account",0dh,0ah, 
 "2. Open an existing account",0dh,0ah, 
 "3. Credit the account",0dh,0ah, 
 "4. Debit the account",0dh,0ah, 
 "5. Exit",0ah,0ah, 
 "Choice> ",0 
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Defining Strings  (3 of 3) 

• End-of-line character sequence: 
• 0Dh = carriage return 
• 0Ah = line feed 

str1 BYTE "Enter your name:    ",0Dh,0Ah 
     BYTE "Enter your address: ",0 
 
newLine BYTE 0Dh,0Ah,0 

Idea: Define all strings used by your program in the same 
area of the data segment. 
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Using the DUP Operator 

• Use DUP to allocate (create space for) an array or 
string. Syntax: counter DUP ( argument ) 

• Counter and argument must be constants or constant 
expressions 

var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero 

var2 BYTE 20 DUP(?) ; 20 bytes, uninitialized 

var3 BYTE 4 DUP("STACK")      ; 20 bytes: "STACKSTACKSTACKSTACK" 

var4 BYTE 10,3 DUP(0),20 ; 5 bytes 
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Defining WORD and SWORD Data 

• Define storage for 16-bit integers 
• or double characters 
• single value or multiple values 

word1  WORD  65535  ; largest unsigned value 
word2  SWORD –32768 ; smallest signed value 
word3  WORD  ? ; uninitialized, unsigned 
word4  WORD  "AB" ; double characters 
myList WORD  1,2,3,4,5 ; array of words 
array  WORD  5 DUP(?) ; uninitialized array 
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Defining DWORD and SDWORD Data 

val1 DWORD  12345678h   ; unsigned 
val2 SDWORD –2147483648   ; signed 
val3 DWORD  20 DUP(?)   ; unsigned array 
val4 SDWORD –3,–2,–1,0,1  ; signed array 

Storage definitions for signed and unsigned 32-bit 
integers: 
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Defining QWORD, TBYTE, Real Data 

quad1 QWORD  1234567812345678h 
val1  TBYTE  1000000000123456789Ah 
rVal1 REAL4  -2.1 
rVal2 REAL8  3.2E-260 
rVal3 REAL10 4.6E+4096 
ShortArray REAL4 20 DUP(0.0) 

Storage definitions for quadwords, tenbyte values, 
and real numbers: 



Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39 

Little Endian Order 

• All data types larger than a byte store their individual 
bytes in reverse order. The least significant byte occurs 
at the first (lowest) memory address. 
 

• Example: 
  val1 DWORD 12345678h 
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Adding Variables to AddSub 
TITLE Add and Subtract, Version 2            (AddSub2.asm) 
; This program adds and subtracts 32-bit unsigned 
; integers and stores the sum in a variable. 
INCLUDE Irvine32.inc 
.data 
val1 DWORD 10000h 
val2 DWORD 40000h 
val3 DWORD 20000h 
finalVal DWORD ? 
.code 
main PROC 
 mov eax,val1 ; start with 10000h 

add eax,val2 ; add 40000h 
sub eax,val3 ; subtract 20000h 
mov finalVal,eax ; store the result (30000h) 
call DumpRegs ; display the registers 
exit 

main ENDP 
END main 
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Declaring Unitialized Data 

• Use the .data? directive to declare an unintialized 
data segment: 
 .data? 

• Within the segment, declare variables with "?" 
initializers: 
 smallArray DWORD 10 DUP(?) 

Advantage: the program's EXE file size is reduced. 
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What's Next 

• Basic Elements of Assembly Language 
• Example: Adding and Subtracting Integers 
• Assembling, Linking, and Running Programs 
• Defining Data 
• Symbolic Constants 
• 64-Bit Programming 
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Symbolic Constants 

• Equal-Sign Directive 
• Calculating the Sizes of Arrays and Strings 
• EQU Directive 
• TEXTEQU Directive 
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Equal-Sign Directive 

• name = expression 
• expression is a 32-bit integer (expression or constant) 
• may be redefined 
• name is called a symbolic constant 

• good programming style to use symbols 

COUNT = 500 

. 

. 

mov ax,COUNT 
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Calculating the Size of a Byte Array 

• current location counter: $ 
• subtract address of list 
• difference is the number of bytes 

list BYTE 10,20,30,40 
ListSize = ($ - list) 
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Calculating the Size of a Word Array 

Divide total number of bytes by 2 (the size of a word) 

list WORD 1000h,2000h,3000h,4000h 
ListSize = ($ - list) / 2 
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Calculating the Size of a Doubleword Array 

Divide total number of bytes by 4 (the size of a 
doubleword) 

list DWORD 1,2,3,4 
ListSize = ($ - list) / 4 
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EQU Directive 

• Define a symbol as either an integer or text 
expression. 

• Cannot be redefined 

PI EQU <3.1416> 

pressKey EQU <"Press any key to continue...",0> 

.data 

prompt BYTE pressKey 
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TEXTEQU Directive 

• Define a symbol as either an integer or text expression. 
• Called a text macro 
• Can be redefined 

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?"> 

rowSize = 5 

.data 

prompt1 BYTE continueMsg 

count TEXTEQU %(rowSize * 2)  ; evaluates the expression 

setupAL TEXTEQU <mov al,count> 

 

.code 

setupAL  ; generates: "mov al,10" 
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What's Next 

• Basic Elements of Assembly Language 
• Example: Adding and Subtracting Integers 
• Assembling, Linking, and Running Programs 
• Defining Data 
• Symbolic Constants 
• 64-Bit Programming 



64-Bit Programming 

• MASM supports 64-bit programming, although the 
following directives are not permitted: 
• INVOKE, ADDR, .model, .386, .stack 
• (Other non-permitted directives will be introduced in 

later chapters) 
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64-Bit Version of AddTwoSum 

1: ; AddTwoSum_64.asm - Chapter 3 example. 
3: ExitProcess PROTO 
5: .data 
6: sum DWORD 0 
8: .code 
9: main  PROC 
10:   mov  eax,5 
11:   add  eax,6 
12:   mov  sum,eax 
13: 
14:   mov  ecx,0 
15:   call ExitProcess 
16: main ENDP 
17: END 
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Things to Notice About the Previous Slide 

• The following lines are not needed: 
 .386 
 .model flat,stdcall 
 .stack 4096 

• INVOKE is not supported.  
• CALL instruction cannot receive arguments 
• Use 64-bit registers when possible 
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Summary 

• Integer expression, character constant 
• directive – interpreted by the assembler 
• instruction – executes at runtime 
• code, data, and stack segments 
• source, listing, object, map, executable files 
• Data definition directives: 

• BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, QWORD, 
TBYTE, REAL4, REAL8, and REAL10 

• DUP operator, location counter ($) 
• Symbolic constant 

• EQU and TEXTEQU 
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