
Assembly Language for x86 Processors
7th Edition

Chapter 1: Basic Concepts

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slides prepared by the author
Revision date: 1/15/2014

Kip Irvine

2

Chapter Overview

• Welcome to Assembly Language
• Virtual Machine Concept
• Data Representation
• Boolean Operations

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014.

3

Welcome to Assembly Language

• Some Good Questions to Ask
• Assembly Language Applications

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014.

4

Questions to Ask

• Why am I learning Assembly Language?
• What background should I have?
• What is an assembler?
• What hardware/software do I need?
• What types of programs will I create?
• What do I get with this book?
• What will I learn?

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014.

5

Welcome to Assembly Language (cont)

• How does assembly language (AL) relate to machine
language?

• How do C++ and Java relate to AL?
• Is AL portable?
• Why learn AL?

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014.

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 6

Assembly Language Applications

• Some representative types of applications:
• Business application for single platform
• Hardware device driver
• Business application for multiple platforms
• Embedded systems & computer games

(see next panel)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 7

Comparing ASM to High-Level Languages

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 8

What's Next

• Welcome to Assembly Language
• Virtual Machine Concept
• Data Representation
• Boolean Operations

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 9

Virtual Machine Concept

• Virtual Machines
• Specific Machine Levels

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 10

Virtual Machines

• Tanenbaum: Virtual machine concept
• Programming Language analogy:

• Each computer has a native machine language (language
L0) that runs directly on its hardware

• A more human-friendly language is usually constructed
above machine language, called Language L1

• Programs written in L1 can run two different ways:
• Interpretation – L0 program interprets and executes L1

instructions one by one
• Translation – L1 program is completely translated into an L0

program, which then runs on the computer hardware

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 11

Translating Languages

English: Display the sum of A times B plus C.

C++: cout << (A * B + C);

Assembly Language:
mov eax,A
mul B
add eax,C
call WriteInt

Intel Machine Language:
A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 12

Specific Machine Levels

(descriptions of individual levels
follow . . .)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 13

High-Level Language

• Level 4
• Application-oriented languages

• C++, Java, Pascal, Visual Basic . . .
• Programs compile into assembly language

(Level 4)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 14

Assembly Language

• Level 3
• Instruction mnemonics that have a one-to-

one correspondence to machine language
• Programs are translated into Instruction Set

Architecture Level - machine language
(Level 2)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 15

Instruction Set Architecture (ISA)

• Level 2
• Also known as conventional machine

language
• Executed by Level 1 (Digital Logic)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 16

Digital Logic

• Level 1
• CPU, constructed from digital logic gates
• System bus
• Memory
• Implemented using bipolar transistors

next: Data Representation

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 17

What's Next

• Welcome to Assembly Language
• Virtual Machine Concept
• Data Representation
• Boolean Operations

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 18

Data Representation

• Binary Numbers
• Translating between binary and decimal

• Binary Addition
• Integer Storage Sizes
• Hexadecimal Integers

• Translating between decimal and hexadecimal
• Hexadecimal subtraction

• Signed Integers
• Binary subtraction

• Character Storage

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 19

Binary Numbers

• Digits are 1 and 0
• 1 = true
• 0 = false

• MSB – most significant bit
• LSB – least significant bit

• Bit numbering:

015
1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSB

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 20

Binary Numbers

• Each digit (bit) is either 1 or 0
• Each bit represents a power of 2:

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary
number is a
sum of powers
of 2

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 21

Translating Binary to Decimal

Weighted positional notation shows how to calculate the
decimal value of each binary bit:
dec = (Dn-1 × 2n-1) + (Dn-2 × 2n-2) + ... + (D1 × 21) + (D0 × 20)
D = binary digit

binary 00001001 = decimal 9:
 (1 × 23) + (1 × 20) = 9

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 22

Translating Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

37 = 100101

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 23

Binary Addition

• Starting with the LSB, add each pair of digits, include
the carry if present.

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 24

Integer Storage Sizes
byte

16

8

32

word

doubleword

64quadword

What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 25

Hexadecimal Integers

Binary values are represented in hexadecimal.

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 26

Translating Binary to Hexadecimal

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 27

Converting Hexadecimal to Decimal

• Multiply each digit by its corresponding power of 16:
 dec = (D3 × 163) + (D2 × 162) + (D1 × 161) + (D0 × 160)

• Hex 1234 equals (1 × 163) + (2 × 162) + (3 × 161) + (4 × 160), or
decimal 4,660.

• Hex 3BA4 equals (3 × 163) + (11 * 162) + (10 × 161) + (4 × 160), or
decimal 15,268.

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 28

Powers of 16

Used when calculating hexadecimal values up to 8 digits
long:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 29

Converting Decimal to Hexadecimal

decimal 422 = 1A6 hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 30

Hexadecimal Addition

• Divide the sum of two digits by the number base (16). The quotient
becomes the carry value, and the remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

1 1

21 / 16 = 1, rem 5

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 31

Hexadecimal Subtraction

• When a borrow is required from the digit to the left, add 16
(decimal) to the current digit's value:

C6 75
A2 47
24 2E

−1

16 + 5 = 21

Practice: The address of var1 is 00400020. The address of the next
variable after var1 is 0040006A. How many bytes are used by var1?

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 32

Signed Integers

The highest bit indicates the sign. 1 = negative,
0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If the highest digit of a hexadecimal integer is > 7, the value is
negative. Examples: 8A, C5, A2, 9D

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 33

Forming the Two's Complement

• Negative numbers are stored in two's complement
notation

• Represents the additive Inverse

Note that 00000001 + 11111111 = 00000000

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 34

Binary Subtraction

• When subtracting A – B, convert B to its two's
complement

• Add A to (–B)

 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
– 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
 0 0 0 0 1 0 0 1

Practice: Subtract 0101 from 1001.

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 35

Learn How To Do the Following:

• Form the two's complement of a hexadecimal integer
• Convert signed binary to decimal
• Convert signed decimal to binary
• Convert signed decimal to hexadecimal
• Convert signed hexadecimal to decimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 36

Ranges of Signed Integers

The highest bit is reserved for the sign. This limits the range:

Practice: What is the largest positive value that may be stored in 20 bits?

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 37

Character Storage

• Character sets
• Standard ASCII (0 – 127)
• Extended ASCII (0 – 255)
• ANSI (0 – 255)
• Unicode (0 – 65,535)

• Null-terminated String
• Array of characters followed by a null byte

• Using the ASCII table
• back inside cover of book

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 38

Numeric Data Representation

• pure binary
• can be calculated directly

• ASCII binary
• string of digits: "01010101"

• ASCII decimal
• string of digits: "65"

• ASCII hexadecimal
• string of digits: "9C"

next: Boolean Operations

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 39

What's Next

• Welcome to Assembly Language
• Virtual Machine Concept
• Data Representation
• Boolean Operations

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 40

Boolean Operations

• NOT
• AND
• OR
• Operator Precedence
• Truth Tables

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 41

Boolean Algebra

• Based on symbolic logic, designed by George Boole
• Boolean expressions created from:

• NOT, AND, OR

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 42

NOT

• Inverts (reverses) a boolean value
• Truth table for Boolean NOT operator:

NOT

Digital gate diagram for NOT:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 43

AND

• Truth table for Boolean AND operator:

AND

Digital gate diagram for AND:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 44

OR

• Truth table for Boolean OR operator:

OR

Digital gate diagram for OR:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 45

Operator Precedence

• Examples showing the order of operations:

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 46

Truth Tables (1 of 3)

• A Boolean function has one or more Boolean inputs,
and returns a single Boolean output.

• A truth table shows all the inputs and outputs of a
Boolean function

Example: ¬X ∨ Y

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 47

Truth Tables (2 of 3)

• Example: X ∧ ¬Y

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 48

Truth Tables (3 of 3)

• Example: (Y ∧ S) ∨ (X ∧ ¬S)

mux
X

Y

S

Z

Two-input multiplexer

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 49

Summary

• Assembly language helps you learn how software is
constructed at the lowest levels

• Assembly language has a one-to-one relationship
with machine language

• Each layer in a computer's architecture is an
abstraction of a machine
• layers can be hardware or software

• Boolean expressions are essential to the design of
computer hardware and software

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 50

54 68 65 20 45 6E 64

What do these numbers represent?

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Welcome to Assembly Language
	Questions to Ask
	Welcome to Assembly Language (cont)
	Assembly Language Applications
	Comparing ASM to High-Level Languages
	What's Next
	Virtual Machine Concept
	Virtual Machines
	Translating Languages
	Specific Machine Levels
	High-Level Language
	Assembly Language
	Instruction Set Architecture (ISA)
	Digital Logic
	What's Next
	Data Representation
	Binary Numbers
	Binary Numbers
	Translating Binary to Decimal
	Translating Unsigned Decimal to Binary
	Binary Addition
	Integer Storage Sizes
	Hexadecimal Integers
	Translating Binary to Hexadecimal
	Converting Hexadecimal to Decimal
	Powers of 16
	Converting Decimal to Hexadecimal
	Hexadecimal Addition
	Hexadecimal Subtraction
	Signed Integers
	Forming the Two's Complement
	Binary Subtraction
	Learn How To Do the Following:
	Ranges of Signed Integers
	Character Storage
	Numeric Data Representation
	What's Next
	Boolean Operations
	Boolean Algebra
	NOT
	AND
	OR
	Operator Precedence
	Truth Tables (1 of 3)
	Truth Tables (2 of 3)
	Truth Tables (3 of 3)
	Summary
	54 68 65 20 45 6E 64

