
Assembly Language for x86 Processors
7th Edition

Chapter 17: Expert MS-DOS
Programming

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• Defining Segments
• Runtime Program Structure
• Interrupt Handling
• Hardware Control Using I/O Ports

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

Defining Segments

• Simplified Segment Directives
• Explicit Segment Definitions
• Segment Overrides
• Combining Segments

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Simplified Segment Directives

• .MODEL – program memory model
• .CODE – code segment
• .CONST – define constants
• .DATA – near data segment
• .DATA? – uninitialized data
• .FARDATA – far data segment
• .FARDATA? – far uninitialize data
• .STACK – stack segment
• .STARTUP – initialize DS and ES
• .EXIT – halt program

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

Memory Models

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

NEAR and FAR Segments

• NEAR segment
• requires only a 16-bit offset
• faster execution than FAR

• FAR segment
• 32-bit offset: requires setting both segment and

offset values
• slower execution than NEAR

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

.MODEL Directive

• The .MODEL directive determines the names and
grouping of segments

• .model tiny
• code and data belong to same segment (NEAR)
• .com file extension

• .model small
• both code and data are NEAR
• data and stack grouped into DGROUP

• .model medium
• code is FAR, data is NEAR

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

.MODEL Directive

• .model compact
• code is NEAR, data is FAR

• .model huge & .model large
• both code and data are FAR

• .model flat
• both code and data are 32-bit NEAR

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

.MODEL Directive

• Syntax:
.MODEL type, language, stackdistance

• Language can be:
• C, BASIC, FORTRAN, PASCAL, SYSCALL, or

STDCALL (details in Chapters 8 and 12).
• Stackdistance can be:

• NEARSTACK: (default) places the stack segment in
the group DGROUP along with the data segment

• FARSTACK: stack and data are not grouped together

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

.STACK Directive

• Syntax:
.STACK [stacksize]

• Stacksize specifies size of stack, in bytes
• default is 1024

• Example: set to 2048 bytes:
• .stack 2048

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

.CODE Directive

• Syntax:
.CODE [segname]
• optional segname overrides the default name

• Small, compact memory models
• NEAR code segment
• segment is named _TEXT

• Medium, large, huge memory models
• FAR code segment
• segment is named modulename_TEXT

Whenever the CPU executes a FAR call or jump, it loads CS with
the new segment address.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Calling Library Procedures

• You must use .MODEL small, stdcall
• (designed for the small memory model)

• You can only call Irvine16 library procedures from
segments named _TEXT.
• (default name when .CODE is used)

• Advantages
• calls and jumps execute more quickly
• simple use of data—DS never needs to change

• Disadvantages
• segment names restricted
• limited to 64K code, and 64K data

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Multiple Code Segments

.code

main PROC
 mov ax,@data
 mov ds,ax
 call WriteString
 call Display
 .exit
main ENDP

Example, p. 585, shows calling Irvine16 procedures from main,
and calling an MS-DOS interrupt from Display.

.code OtherCode

Display PROC
 mov ah,9
 mov dx,OFFSET msg2
 int 21h
 ret
Display ENDP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

Near Data Segments

• .DATA directive creates a Near segment
• Up to 64K in Real-address mode
• Up to 512MB in Protected mode (Windows NT)
• 16-bit offsets are used for all code and data
• automatically creates segment named DGROUP
• can be used in any memory model

• Other types of data:
• .DATA? (uninitialized data)
• .CONST (constant data)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Far Data Segments

• .FARDATA
• creates a FAR_DATA segment

• .FARDATA?
• creates a FAR_BSS segment

• Code to access data in a far segment:

.FARDATA
myVar
.CODE
 mov ax,SEG myVar
 mov ds,ax

The SEG operator returns
the segment value of a
label. Similar to @data.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

Data-Related Symbols

• @data returns the group of the data segment
• @DataSize returns the size of the memory model set

by the .MODEL directive
• @WordSize returns the size attribute of the current

segment
• @CurSeg returns the name of the current segment

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

Explicit Segment Definitions

• Use them when you cannot or do not want to use
simplified segment directives

• All segment attributes must be specified
• The ASSUME directive is required

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

SEGMENT Directive

• name identifies the segment; it can either be unique or the
name of an existing segment.

• align can be BYTE, WORD, DWORD, PARA, or PAGE.
• combine can be PRIVATE, PUBLIC, STACK, COMMON,

MEMORY, or AT address.
• class is an identifier used when identifying a particular type of

segment such as CODE or STACK.

name SEGMENT [align] [combine] ['class']
 statements
name ENDS

Syntax:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

Segment Example

ExtraData SEGMENT PARA PUBLIC 'DATA'
 var1 BYTE 1
 var2 WORD 2
ExtraData ENDS

• name: ExtraData
• paragraph align type (starts on 16-bit boundary)

• public combine type: combine with all other public
segments having the same name

• 'DATA' class: 'DATA' (load into memory along with other
segments whose class is 'DATA')

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

ASSUME Directive

• Tells the assembler how to calculate the offsets
of labels

• Associates a segment register with a segment
name

Syntax:

ASSUME segreg:segname [,segreg:segname] ...

ASSUME cs:myCode, ds:Data, ss:myStack
ASSUME es:ExtraData

Examples:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

Multiple Data Segments (1 of 2)

cseg SEGMENT 'CODE'
ASSUME cs:cseg, ds:data1, es:data2, ss:mystack

main PROC
 mov ax,data1 ; DS points to data1
 mov ds,ax
 mov ax,SEG val2 ; ES points to data2
 mov es,ax
 mov ax,val1 ; data1 segment assumed
 mov bx,val2 ; data2 segment assumed

 mov ax,4C00h ; (same as .exit)
 int 21h
main ENDP
cseg ENDS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

Multiple Data Segments (1 of 2)

data1 SEGMENT 'DATA'
 val1 WORD 1001h
data1 ENDS

data2 SEGMENT 'DATA'
 val2 WORD 1002h
data2 ENDS

mystack SEGMENT PARA STACK 'STACK'
 BYTE 100h DUP('S')
mystack ENDS

END main

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

Segment Overrides

• A segment override instructs the processor to use a
different segment from the default when calculating
an effective address

• Syntax:

cseg SEGMENT 'CODE'
ASSUME cs:cseg, ss:mystack

main PROC
 ...
 mov ax,ds:val1
 mov bx,OFFSET AltSeg:var2

segreg:segname
segname:label

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

Combining Segments

• Segments can be merged into a single segment by
the linker, if . . .
• their names are the same,
• and they both have combine type PUBLIC,
• . . . even when they appear in different source code

modules
• Example:

• cseg SEGMENT PUBLIC 'CODE'
• See the program in the Examples\ch16\Seg2\

directory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

What's Next

• Defining Segments
• Runtime Program Structure
• Interrupt Handling
• Hardware Control Using I/O Ports

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Runtime Program Structure

• COM Programs
• EXE Programs

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

When you run a program, . . .

MS-DOS performs the following steps, in order:
1. checks for a matching internal command name
2. looks for a matching file with .COM, .EXE, or .BAT

extensions, in that order, in the current directory
3. looks in the first directory in the PATH variable, for

.COM, .EXE, and .BAT file
4. continutes to second directory in the PATH, and so on

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

Program Segment Prefix (PSP)

• 256-byte memory block created when a program is
loaded into memory

• contains pointer to Ctrl-Break handler
• contains pointers saved by MS-DOS
• Offset 2Ch: 16-bit segment address of current

environment string
• Offset 80h: disk transfer area, and copy of the current

MS-DOS command tail

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

COM Programs

• Unmodified binary image of a program
• PSP created at offset 0 by loader
• Code, data, stack all in the same segment
• Code entry point is at offset 0100h, data follows

immediately after code
• Stack located at the end of the segment
• All segments point to base of PSP
• Based on TINY memory model
• Linker uses the /T option
• Can only run under MS-DOS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Sample COM Program

TITLE Hello Program in COM format (HelloCom.asm)

.MODEL tiny
.code
ORG 100h ; must be before main
main PROC
 mov ah,9
 mov dx,OFFSET hello_message
 int 21h
 mov ax,4C00h
 int 21h
main ENDP

hello_message BYTE 'Hello, world!',0dh,0ah,'$'

END main

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

EXE Programs

• Use memory more efficiently than COM programs
• Stored on disk in two parts:

• EXE header record
• load module (code and data)

• PSP created when loaded into memory
• DS and ES set to the load address
• CS and IP set to code entry point
• SS set to the beginning of the stack segment, and SP

set to the stack size

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

EXE Programs

(64K)

(64K)

(64K)stack

data

code

00 20 30 130

Offset

Sample EXE structure shows overlapping code, data, and
stack segments:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

EXE Header Record

• A relocation table, containing addresses to be calculated
when the program is loaded.

• The file size of the EXE program, measured in 512-byte
units.

• Minimum allocation: min number of paragraphs needed
above the program.

• Maximum allocation: max number of paragraphs needed
above the program.

• Starting IP and SP values.
• Displacement (in paragraphs) of the stack and code

segments from the beginning of the load module.
• A checksum of all words in the file, used in catching data

errors when loading the program into memory.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

What's Next

• Defining Segments
• Runtime Program Structure
• Interrupt Handling
• Hardware Control Using I/O Ports

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

Interrupt Handling

• Overview
• Hardware Interrupts
• Interrupt Control Instructions
• Writing a Custom Interrupt Handler
• Terminate and Stay Resident Programs
• The No_Reset Program

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

Overview

• Interrupt handler (interrrupt service routine) –
performs common I/O tasks
• can be called as functions
• can be activated by hardware events

• Examples:
• video output handler
• critical error handler
• keyboard handler
• divide by zero handler
• Ctrl-Break handler
• serial port I/O

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Interrupt Vector Table

• Each entry contains a 32-bit segment/offset address
that points to an interrupt service routine

• Offset = interruptNumber * 4
• The following are only examples:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

Hardware Interrupts

• Generated by the Intel 8259 Programmable Interrupt
Contoller (PIC)
• in response to a hardware signal

• Interrupt Request Levels (IRQ)
• priority-based interrupt scheduler
• brokers simultaneous interrupt requests
• prevents low-priority interrupt from interrupting a high-

priority interrupt

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

Common IRQ Assignments

• 0 System timer
• 1 Keyboard
• 2 Programmable Interrupt Controller
• 3 COM2 (serial)
• 4 COM1 (serial)
• 5 LPT2 (printer)
• 6 Floppy disk controller
• 7 LPT1 (printer)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

Common IRQ Assignments

• 8 CMOS real-time clock
• 9 modem, video, network, sound, and USB

 controllers
• 10 (available)
• 11 (available)
• 12 mouse
• 13 Math coprocessor
• 14 Hard disk controller
• 15 (available)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

Interrupt Control Instructions

• STI – set interrupt flag
• enables external interrupts
• always executed at beginning of an interrupt handler

• CLI – clear interrupt flag
• disables external interrupts
• used before critical code sections that cannot be

interrupted
• suspends the system timer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

Writing a Custom Interrupt Handler

• Motivations
• Change the behavior of an existing handler
• Fix a bug in an existing handler
• Improve system security by disabling certain keyboard

commands
• What's Involved

• Write a new handler
• Load it into memory
• Replace entry in interrupt vector table
• Chain to existing interrupt hander (usually)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Get Interrupt Vector

• INT 21h Function 35h – Get interrupt vector
• returns segment-offset addr of handler in ES:BX

.data
int9Save LABEL WORD
DWORD ? ; store old INT 9 address here
.code
mov ah,35h ; get interrupt vector
mov al,9 ; for INT 9
int 21h ; call MS-DOS
mov int9Save,BX ; store the offset
mov [int9Save+2],ES ; store the segment

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

Set Interrupt Vector

• INT 21h Function 25h – Set interrupt vector
• installs new interrupt handler, pointed to by DS:DX

mov ax,SEG kybd_rtn ; keyboard handler
mov ds,ax ; segment
mov dx,OFFSET kybd_rtn ; offset
mov ah,25h ; set Interrupt vector
mov al,9h ; for INT 9h
int 21h
.
.
kybd_rtn PROC ; (new handler begins here)

See the CtrlBrk.asm program.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

Keyboard Processing Steps

1. Key pressed, byte sent by hardward to keyboard
port

2. 8259 controller interrupts the CPU, passing it the
interrupt number

3. CPU looks up interrupt vector table entry 9h,
branches to the address found there

10B2:0020
(our program) (Bios INT 9

service routine)
.
.
.
IRET

.

.

.
jmp 0DAD:2BAD

Interrupt
Vector Table

(INT 9)

10B2:0020 0DAD:2BAD

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

Keyboard Processing Steps

4. Our handler executes, intercepting the byte sent by
the keyboard

5. Our handler jumps to the regular INT 9 handler
6. The INT 9h handler finishes and returns
7. System continues normal processing

10B2:0020
(our program) (Bios INT 9

service routine)
.
.
.
IRET

.

.

.
jmp 0DAD:2BAD

Interrupt
Vector Table

(INT 9)

10B2:0020 0DAD:2BAD

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

Terminate and Stay Resident Programs

• (TSR): Installed in memory, stays there until removed
• by a removal program, or by rebooting

• Keyboard example
• replace the INT 9 vector so it points to our own handler
• check, or filter certain keystroke combinations, using

our handler
• forward-chain to the existing INT 9 handler to do

normal keyboard processing

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

The No_Reset Program (1 of 5)

• Inspects each incoming key
• If the Del key is received,

• checks for the Ctrl and Alt keys
• permits a system reset only if the Right shift key is also

held down

1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0 (bit position)

Insert mode on
Caps lock is on
Num lock is on
Scroll lock is on
ALT key held down
CTRL key held down
Left shift key held down
Right shift key held down

The keyboard status
byte indicates the
current state of
special keys:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

The No_Reset Program (2 of 5)

• View the source code
• Resident program begins with:

int9_handler PROC FAR
 sti ; enable hardware interrupts
 pushf ; save regs & flags
 push es
 push ax
 push di

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

The No_Reset Program (3 of 5)

• Locate the keyboard flag byte and copy into AH:

L1: mov ax,40h ; DOS data segment is at 40h
 mov es,ax
 mov di,17h ; location of keyboard flag
 mov ah,es:[di] ; copy keyboard flag into AH

• Check to see if the Ctrl and Alt keys are held down:

L2: test ah,ctrl_key ; Ctrl key held down?
 jz L5 ; no: exit
 test ah,alt_key ; ALT key held down?
 jz L5 ; no: exit

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

The No_Reset Program (4 of 5)

• Test for the Del and Right shift keys:
L3: in al,kybd_port ; read keyboard port
 cmp al,del_key ; Del key pressed?
 jne L5 ; no: exit
 test ah,rt_shift ; right shift key pressed?
 jnz L5 ; yes: allow system reset

• Turn off the Ctrl key and write the keyboard flag byte
back to memory:

L4: and ah,NOT ctrl_key ; turn off bit for CTRL
 mov es:[di],ah ; store keyboard_flag

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

The No_Reset Program (5 of 5)

• Pop the flags and registers off the stack and execute
a far jump to the existing BIOS INT 9h routine:

L5: pop di ; restore regs & flags
 pop ax
 pop es
 popf
 jmp cs:[old_interrupt9] ; jump to INT 9 routine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

What's Next

• Defining Segments
• Runtime Program Structure
• Interrupt Handling
• Hardware Control Using I/O

Ports

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Hardware Control Using I/O Ports

• Two types of hardware I/O
• memory mapped

• program and hardware device share the same memory
address, as if it were a variable

• port based
• data written to port using the OUT instruction
• data read from port using the IN instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

Input-Ouput Ports

• ports numbered from 0 to FFFFh
• keyboard controller chip sends 8-bit scan code to port

60h
• triggers a hardware interrupt 9

• IN and OUT instructions:
IN accumulator, port
OUT port, accumulator

• accumulator is AL, AX, or EAX
• port is a constant between 0 and FFh, or a value in DX

betweeen 0 and FFFFh

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

PC Sound Program

• Generates sound through speaker
• speaker control port: 61h
• Intel 8255 Programmable Peripheral Interface chip

turns the speaker on and off
• Intel 8253 Timer chip controls the frequency
• Source code

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

Summary

• Explicit segment definitions used often in custom
code libraries

• Directives: SEGMENT, ENDS, ASSUME
• Transient programs
• Program segment prefix (PSP)
• Interrupt handlers, interrupt vector table
• Hardware interrupt, 8259 Programmable Interrupt

Controller, interrupt flag
• Terminate and Stay Resident (TSR)
• Memory-mapped and port-based I/O

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

The End

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	Defining Segments
	Simplified Segment Directives
	Memory Models
	NEAR and FAR Segments
	.MODEL Directive
	.MODEL Directive
	.MODEL Directive
	.STACK Directive
	.CODE Directive
	Calling Library Procedures
	Multiple Code Segments
	Near Data Segments
	Far Data Segments
	Data-Related Symbols
	Explicit Segment Definitions
	SEGMENT Directive
	Segment Example
	ASSUME Directive
	Multiple Data Segments (1 of 2)
	Multiple Data Segments (1 of 2)
	Segment Overrides
	Combining Segments
	What's Next
	Runtime Program Structure
	When you run a program, . . .
	Program Segment Prefix (PSP)
	COM Programs
	Sample COM Program
	EXE Programs
	EXE Programs
	EXE Header Record
	What's Next
	Interrupt Handling
	Overview
	Interrupt Vector Table
	Hardware Interrupts
	Common IRQ Assignments
	Common IRQ Assignments
	Interrupt Control Instructions
	Writing a Custom Interrupt Handler
	Get Interrupt Vector
	Set Interrupt Vector
	Keyboard Processing Steps
	Keyboard Processing Steps
	Terminate and Stay Resident Programs
	The No_Reset Program (1 of 5)
	The No_Reset Program (2 of 5)
	The No_Reset Program (3 of 5)
	The No_Reset Program (4 of 5)
	The No_Reset Program (5 of 5)
	What's Next
	Hardware Control Using I/O Ports
	Input-Ouput Ports
	PC Sound Program
	Summary
	The End

