
Assembly Language for x86 Processors
7th Edition

Chapter 14: 16-Bit MS-DOS
Programming

(c) Pearson Education, 2014. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

Slide show prepared by the author
Revision date: 1/15/2014

Kip R. Irvine

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 2

Chapter Overview

• MS-DOS and the IBM-PC
• MS-DOS Function Calls (INT 21h)
• Standard MS-DOS File I/O Services

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

MS-DOS and the IBM-PC

• Real-Address Mode
• MS-DOS Memory Organization
• MS-DOS Memory Map
• Redirecting Input-Output
• Software Interrupts
• INT Instruction
• Interrupt Vectoring Process
• Common Interrupts

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Real-Address Mode

• Real-address mode (16-bit mode) programs have
the following characteristics:
• Max 1 megabyte addressable RAM
• Single tasking
• No memory boundary protection
• Offsets are 16 bits

• IBM PC-DOS: first Real-address OS for IBM-PC
• Has roots in Gary Kildall's highly successful Digital

Research CP/M
• Later renamed to MS-DOS, owned by Microsoft

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

MS-DOS Memory Organization

• Interrupt Vector Table
• BIOS & DOS data
• Software BIOS
• MS-DOS kernel
• Resident command processor
• Transient programs
• Video graphics & text
• Reserved (device controllers)
• ROM BIOS

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

Real-Address mode

• 1 MB RAM maximum addressable
• Application programs can access any area

of memory
• Single tasking
• Supported by MS-DOS operating system

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

Segmented Memory
Segmented memory addressing: absolute (linear) address is a
combination of a 16-bit segment value added to a 16-bit offset

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

8000:0000

8000:FFFF

seg ofs

8000:0250

0250

one segment

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

Calculating Linear Addresses

• Given a segment address, multiply it by 16 (add a
hexadecimal zero), and add it to the offset

• Example: convert 08F1:0100 to a linear address

Adjusted Segment value: 0 8 F 1 0

Add the offset: 0 1 0 0

Linear address: 0 9 0 1 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

Your turn . . .

What linear address corresponds to the segment/offset
address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

Your turn . . .

What segment addresses correspond to the linear address
28F30h?

Many different segment-offset addresses can produce the
linear address 28F30h. For example:

 28F0:0030, 28F3:0000, 28B0:0430, . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

MS-DOS Memory Map

ROM BIOS

Reserved

Video Text & Graphics

Video Graphics

Resident Command Processor

DOS Kernel, Device Drivers

Software BIOS

BIOS & DOS Data

Interrupt Vector Table

FFFFF

00400

A0000

B8000

C0000

F0000

00000

Address

640K RAM

Transient Program Area
(available for application programs)

Transient Command Processor

VRAM

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Redirecting Input-Output (1 of 2)

• Input-output devices and files are interchangeable
• Three primary types of I/O:

• Standard input (console, keyboard)
• Standard output (console, display)
• Standard error (console, display)

• Symbols borrowed from Unix:
• < symbol: get input from
• > symbol: send output to
• | symbol: pipe output from one process to another

• Predefined device names:
• PRN, CON, LPT1, LPT2, NUL, COM1, COM2

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

Redirecting Input-Output (2 of 2)

• Standard input, standard output can both be redirected
• Standard error cannot be redirected
• Suppose we have created a program named

myprog.exe that reads from standard input and writes
to standard output. Following are MS-DOS commands
that demonstrate various types of redirection:

myprog < infile.txt

myprog > outfile.txt

myprog < infile.txt > outfile.txt

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

INT Instruction
• The INT instruction executes a software interrupt.
• The code that handles the interrupt is called an

interrupt handler.
• Syntax:

INT number

(number = 0..FFh)

The Interrupt Vector Table (IVT) holds a 32-bit segment-
offset address for each possible interrupt handler.

Interrupt Service Routine (ISR) is another name for interrupt
handler.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Interrupt Vectoring Process

mov...
int 10h
add...

F000:F0653069 F000:AB62

 F000:F065
 F066
 F067
 F068
 .
 .

 sti
 cld
 push es
 .
 .
 IRET

1 2

3
Calling program

(entry for INT 10)

Interrupt Vector Table

Interrupt Handler

4

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

Common Interrupts

• INT 10h Video Services
• INT 16h Keyboard Services
• INT 17h Printer Services
• INT 1Ah Time of Day
• INT 1Ch User Timer Interrupt
• INT 21h MS-DOS Services

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

What's Next

• MS-DOS and the IBM-PC
• MS-DOS Function Calls (INT 21h)
• Standard MS-DOS File I/O Services

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

MS-DOS Function Calls (INT 21h)

• ASCII Control Characters
• Selected Output Functions
• Selected Input Functions
• Example: String Encryption
• Date/Time Functions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

INT 4Ch: Terminate Process

• Ends the current process (program), returns an
optional 8-bit return code to the calling process.

• A return code of 0 usually indicates successful
completion.

mov ah,4Ch ; terminate process
mov al,0 ; return code
int 21h

; Same as:

.EXIT 0

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Selected Output Functions

• ASCII control characters
• 02h, 06h - Write character to standard output
• 05h - Write character to default printer
• 09h - Write string to standard output
• 40h - Write string to file or device

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

ASCII Control Characters

• 08h - Backspace (moves one column to the left)
• 09h - Horizontal tab (skips forward n columns)
• 0Ah - Line feed (moves to next output line)
• 0Ch - Form feed (moves to next printer page)
• 0Dh - Carriage return (moves to leftmost output

column)
• 1Bh - Escape character

Many INT 21h functions act upon the following
control characters:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

INT 21h Functions 02h and 06h:
Write Character to Standard Output

Write the letter 'A' to standard output:

mov ah,02h
mov dl,’A’
int 21h

Write a backspace to standard output:

mov ah,06h
mov dl,08h
int 21h

or: mov ah,2

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

INT 21h Function 05h:
Write Character to Default Printer

Write the letter 'A':

mov ah,05h
mov dl,65
int 21h

Write a horizontal tab:

mov ah,05h
mov dl,09h
int 21h

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

INT 21h Function 09h:
Write String to Standard Output

.data
string BYTE "This is a string$"

.code
mov ah,9
mov dx,OFFSET string
int 21h

• The string must be terminated by a '$' character.
• DS must point to the string's segment, and DX

must contain the string's offset:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

INT 21h Function 40h:
Write String to File or Device

.data
message "Writing a string to the console"
bytesWritten WORD ?

.code

mov ah,40h
mov bx,1
mov cx,LENGTHOF message
mov dx,OFFSET message
int 21h
mov bytesWritten,ax

Input: BX = file or device handle (console = 1), CX =
number of bytes to write, DS:DX = address of array

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

Selected Input Functions

• 01h, 06h - Read character from standard input
• 0Ah - Read array of buffered characters from

standard input
• 0Bh - Get status of the standard input buffer
• 3Fh - Read from file or device

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

INT 21h Function 01h:
Read single character from standard input

.data
char BYTE ?
.code
mov ah,01h
int 21h
mov char,al

• Echoes the input character
• Waits for input if the buffer is empty
• Checks for Ctrl-Break (^C)
• Acts on control codes such as horizontal Tab

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

INT 21h Function 06h:
Read character from standard input without waiting

.data
char BYTE ?
.code
L1: mov ah,06h ; keyboard input
 mov dl,0FFh ; don't wait for input
 int 21h
 jz L1 ; no character? repeat loop
 mov char,al ; character pressed: save it
 call DumpRegs ; display registers

• Does not echo the input character
• Does not wait for input (use the Zero flag to check for

an input character)
• Example: repeats loop until a character is pressed.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

INT 21h Function 0Ah:
Read buffered array from standard input (1 of 2)

count = 80

KEYBOARD STRUCT
 maxInput BYTE count ; max chars to input
 inputCount BYTE ? ; actual input count
 buffer BYTE count DUP(?) ; holds input chars
KEYBOARD ENDS

• Requires a predefined structure to be set up that
describes the maximum input size and holds the
input characters.

• Example:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

INT 21h Function 0Ah (2 of 2)

.data
kybdData KEYBOARD <>

.code
 mov ah,0Ah
 mov dx,OFFSET kybdData
 int 21h

Executing the interrupt:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

INT 21h Function 0Bh:
Get status of standard input buffer

L1: mov ah,0Bh ; get buffer status
 int 21h
 cmp al,0 ; buffer empty?
 je L1 ; yes: loop again
 mov ah,1 ; no: input the key
 int 21h
 mov char,al ; and save it

• Can be interrupted by Ctrl-Break (^C)
• Example: loop until a key is pressed. Save the

key in a variable:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

Example: String Encryption

XORVAL = 239 ; any value between 0-255
.code
main PROC
 mov ax,@data
 mov ds,ax
L1: mov ah,6 ; direct console input
 mov dl,0FFh ; don't wait for character
 int 21h ; AL = character
 jz L2 ; quit if ZF = 1 (EOF)
 xor al,XORVAL
 mov ah,6 ; write to output
 mov dl,al
 int 21h
 jmp L1 ; repeat the loop
L2: exit

Reads from standard input, encrypts each byte, writes to
standard output.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

INT 21h Function 3Fh:
Read from file or device

.data
inputBuffer BYTE 127 dup(0)
bytesRead WORD ?
.code
mov ah,3Fh
mov bx,0 ; keyboard handle
mov cx,127 ; max bytes to read
mov dx,OFFSET inputBuffer ; target location
int 21h
mov bytesRead,ax ; save character count

• Reads a block of bytes.
• Can be interrupted by Ctrl-Break (^C)
• Example: Read string from keyboard:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

Date/Time Functions

• 2Ah - Get system date
• 2Bh - Set system date *
• 2Ch - Get system time
• 2Dh - Set system time *

* may be restricted by your user profile if running a console
window under Windows NT, 2000, and XP.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

INT 21h Function 2Ah:
Get system date

mov ah,2Ah
int 21h
mov year,cx
mov month,dh
mov day,dl
mov dayOfWeek,al

• Returns year in CX, month in DH, day in DL, and
day of week in AL

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

INT 21h Function 2Bh:
Set system date

mov ah,2Bh
mov cx,year
mov dh,month
mov dl,day
int 21h
cmp al,0
jne failed

• Sets the system date. AL = 0 if the function was
not successful in modifying the date.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

INT 21h Function 2Ch:
Get system time

mov ah,2Ch
int 21h
mov hours,ch
mov minutes,cl
mov seconds,dh

• Returns hours (0-23) in CH, minutes (0-59) in
CL, and seconds (0-59) in DH, and hundredths
(0-99) in DL.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

INT 21h Function 2Dh:
Set system time

mov ah,2Dh
mov ch,hours
mov cl,minutes
mov dh,seconds
int 21h
cmp al,0
jne failed

• Sets the system date. AL = 0 if the function was
not successful in modifying the time.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

Example: Displaying the Date and Time

• Displays the system date and time, using INT 21h
Functions 2Ah and 2Ch.

• Demonstrates simple date formatting
• View the source code
• Sample output:

Date: 12-8-2001, Time: 23:01:23

ToDo: write a procedure named ShowDate that displays any date
in mm-dd-yyyy format.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

What's Next

• MS-DOS and the IBM-PC
• MS-DOS Function Calls (INT 21h)
• Standard MS-DOS File I/O Services

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

Standard MS-DOS File I/O Services

• 716Ch - Create or open file
• 3Eh - Close file handle
• 42h - Move file pointer
• 5706h - Get file creation date and time
• Selected Irvine16 Library Procedures
• Example: Read and Copy a Text File
• Reading the MS-DOS Command Tail
• Example: Creating a Binary File

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

INT 21h Function 716Ch:
Create or open file

• AX = 716Ch
• BX = access mode (0 = read, 1 = write, 2 = read/write)
• CX = attributes (0 = normal, 1 = read only, 2 = hidden,

 3 = system, 8 = volume ID, 20h = archive)
• DX = action (1 = open, 2 = truncate, 10h = create)
• DS:SI = segment/offset of filename
• DI = alias hint (optional)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

Example: Create a New File

mov ax,716Ch ; extended open/create
mov bx,2 ; read-write
mov cx,0 ; normal attribute
mov dx,10h + 02h ; action: create + truncate
mov si,OFFSET Filename
int 21h
jc failed
mov handle,ax ; file handle
mov actionTaken,cx ; action taken to open file

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

Example: Open an Existing File

mov ax,716Ch ; extended open/create
mov bx,0 ; read-only
mov cx,0 ; normal attribute
mov dx,1 ; open existing file
mov si,OFFSET Filename
int 21h
jc failed
mov handle,ax ; file handle
mov actionTaken,cx ; action taken to open file

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

INT 21h Function 3Eh:
Close file handle

.data
filehandle WORD ?
.code
 mov ah,3Eh
 mov bx,filehandle
 int 21h
 jc failed

• Use the same file handle that was returned by
INT 21h when the file was opened.

• Example:

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

INT 21h Function 42h:
Move file pointer

mov ah,42h
mov al,0 ; offset from beginning
mov bx,handle
mov cx,offsetHi
mov dx,offsetLo
int 21h

AL indicates how the pointer's offset is calculated:
0: Offset from the beginning of the file
1: Offset from the current pointer location
2: Offset from the end of the file

Permits random access to a file (text or binary).

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

INT 21h Function 5706h:
Get file creation date and time

mov ax,5706h
mov bx,handle ; handle of open file
int 21h
jc error
mov date,dx
mov time,cx
mov milliseconds,si

• Obtains the date and time when a file was created
(not necessarily the same date and time when the
file was last modified or accessed.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Selected Irvine16 Library Procedures

• 16-Bit ReadString procedure
• 16-Bit WriteString procedure

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

ReadString Procedure

.data
buffer BYTE 20 DUP(?)
.code
mov dx,OFFSET buffer
mov cx,LENGTHOF buffer
call ReadString

The ReadString procedure from the Irvine16 library reads a
string from standard input and returns a null-terminated string.
When calling it, pass a pointer to a buffer in DX. Pass a count
of the maximum number of characters to input, plus 1, in CX.
Writestring inputs the string from the user, returning when either
of the following events occurs:

1.CX –1 characters were entered.
2.The user pressed the Enter key.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

ReadString Procedure

.data
buffer BYTE 20 DUP(?)
.code
mov edx,OFFSET buffer
mov ecx,LENGTHOF buffer
call ReadString

You can also call it using 32-bit registers:

ReadString returns a count of the number of characters actually
read in the EAX register.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

ReadString Implementation
ReadString PROC
 push cx ; save registers
 push si
 push cx ; save character count
 mov si,dx ; point to input buffer
 dec cx ; save room for null byte
L1: mov ah,1 ; function: keyboard input
 int 21h ; returns character in AL
 cmp al,0Dh ; end of line?
 je L2 ; yes: exit
 mov [si],al ; no: store the character
 inc si ; increment buffer pointer
 loop L1 ; loop until CX=0
L2: mov BYTE PTR [si],0 ; insert null byte
 pop ax ; original digit count
 sub ax,cx ; AX = size of input string
 pop si ; restore registers
 pop cx
 ret
ReadString ENDP ; returns AX = size of string

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

16-Bit WriteString Procedure

WriteString PROC
 pusha
 INVOKE Str_length,dx ; AX = string length
 mov cx,ax ; CX = number of bytes
 mov ah,40h ; write to file or device
 mov bx,1 ; standard output handle
 int 21h ; call MS-DOS
 popa
 ret
WriteString ENDP

Receives: DX contains the offset of a null-terminated string.

(May be different from the version printed on page 482.)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

Example: Read and Copy a Text File

• The Readfile.asm program demonstrates several INT
21h functions:
• Function 716Ch: Create new file or open existing file
• Function 3Fh: Read from file or device
• Function 40h: Write to file or device
• Function 3Eh: Close file handle

View the source code

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Reading the MS-DOS Command Tail

• When a program runs, any additional text on its
command line is automatically stored in the 128-byte
MS-DOS command tail area, at offset 80h in the
program segment prefix (PSP).

• Example: run a program named attr.exe and pass
it "FILE1.DOC" as the command tail:

0A 20 46 49 4C 45 31 2E 44 434F 0D

80 81 82 83 84 85 86 87 88 89 8A 8BOffset:

Contents:

F I L E 1 . D O C

View the Get_CommandTail library procedure source code.

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

Example: Creating a Binary File

• A binary file contains fields that are are generally not
recognizable when displayed on the screen.

• Advantage: Reduces I/O processing time
• Example: translating a 5-digit ASCII integer to binary

causes approximately 100 instructions to execute.

• Disadvantage: may require more disk space
• Example: array of 4 doublewords:

• "795 43 1234 2" - requires 13 bytes in ASCII
• requires 16 bytes in binary

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

Summary

• MS-DOS applications
• 16-bit segments, segmented addressing, running in real-

address mode
• complete access to memory and hardware

• Software interrupts
• processed by interrupt handlers

• INT (call to interrrupt procedure) instruction
• pushes flags & return address on the stack
• uses interrupt vector table to find handler

• Program Segment Prefix (PSP)
• BIOS Services (INT 10h, INT 16h, INT 17h, ...)
• MS-DOS Services (INT 21h)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

The End

	Assembly Language for x86 Processors 7th Edition
	Chapter Overview
	MS-DOS and the IBM-PC
	Real-Address Mode
	MS-DOS Memory Organization
	Real-Address mode
	Segmented Memory
	Calculating Linear Addresses
	Your turn . . .
	Your turn . . .
	MS-DOS Memory Map
	Redirecting Input-Output (1 of 2)
	Redirecting Input-Output (2 of 2)
	INT Instruction
	Interrupt Vectoring Process
	Common Interrupts
	What's Next
	MS-DOS Function Calls (INT 21h)
	INT 4Ch: Terminate Process
	Selected Output Functions
	ASCII Control Characters
	INT 21h Functions 02h and 06h: �Write Character to Standard Output
	INT 21h Function 05h: �Write Character to Default Printer
	INT 21h Function 09h: �Write String to Standard Output
	INT 21h Function 40h: �Write String to File or Device
	Selected Input Functions
	INT 21h Function 01h: �Read single character from standard input
	INT 21h Function 06h: �Read character from standard input without waiting
	INT 21h Function 0Ah: �Read buffered array from standard input (1 of 2)
	INT 21h Function 0Ah (2 of 2)
	INT 21h Function 0Bh: �Get status of standard input buffer
	Example: String Encryption
	INT 21h Function 3Fh: �Read from file or device
	Date/Time Functions
	INT 21h Function 2Ah: �Get system date
	INT 21h Function 2Bh: �Set system date
	INT 21h Function 2Ch: �Get system time
	INT 21h Function 2Dh: �Set system time
	Example: Displaying the Date and Time
	What's Next
	Standard MS-DOS File I/O Services
	INT 21h Function 716Ch: �Create or open file
	Example: Create a New File
	Example: Open an Existing File
	INT 21h Function 3Eh: �Close file handle
	INT 21h Function 42h: �Move file pointer
	INT 21h Function 5706h: �Get file creation date and time
	Selected Irvine16 Library Procedures
	ReadString Procedure
	ReadString Procedure
	ReadString Implementation
	16-Bit WriteString Procedure
	Example: Read and Copy a Text File
	Reading the MS-DOS Command Tail
	Example: Creating a Binary File
	Summary
	The End

