
(c) Pearson Education, 2003.

Supplement to: Irvine, Kip R. Assembly Language for Intel-Based Computers, 4th Edition.
This file may be duplicated or printed for classroom use, as long as the author name, book title,
and copyright notice remain unchanged.

Character Translation Methods

One task that assembly language programs handle best is character translation. There are many
computer applications for this. The rapidly expanding field of data encryption is one, where data
files must be securely stored and transmitted between computers while their contents are kept
secret. Another application is data communications, where keyboard and screen codes must be
translated in order to emulate various terminals. Often, we need to translate characters from one
encoding system to another—from ASCII to EBCDIC, for example. A critical factor in each of
these applications is speed, which just happens to be a feature of assembly language.

The XLAT Instruction

The XLAT instruction adds AL to EBX and uses the resulting offset to point to an entry in an 8-
bit translate table. This table contains values that are substituted for the original value in AL.
The byte in the table entry pointed to by EBX + AL is moved to AL. The syntax is

XLAT [tablename]

Tablename is optional because the table is assumed to be pointed to by EBX (or BX, in Real-
address mode). Therefore, be sure to load BX with the offset of the translate table before invok-
ing XLAT. The flags are not affected by this instruction. The table can have a maximum of 256
entries, the same range of values possible in the 8-bit AL register.

Example Let's store the characters representing all 16 hexadecimal digits in a table:

table BYTE '0123456789ABCDEF'

The table contains the ASCII code of each hexadecimal digit. If we place 0Ah in AL with the
thought of converting it to ASCII, we can set EBX to the table offset and invoke XLAT. The
instruction adds EBX and AL, generating an effective address that points to the eleventh entry in
the table. It then moves the contents of this table entry to A:

mov al,0Ah ; index value

mov ebx,OFFSET table ; point to table

xlat ; AL = 41h, or 'A'

2 • Character Translation Methods

Character Filtering

One of the best uses of XLAT is to filter out unwanted characters from a stream of text. Suppose
we want to input a string of characters from the keyboard and echo only those with ASCII values
from 32 to 127. We can set up a translate table, place a zero in each table position corresponding
to an invalid character, and place 0FFh in each valid position:

validchars BYTE 32 DUP(0) ; invalid chars: 0-31
BYTE 96 DUP(0FFh) ; valid chars: 32-127
BYTE 128 DUP(0) ; invalid chars: 128-255

The following Xlat.asm program includes code that inputs a series of characters and uses
them to look up values in the validchars table:

TITLE Character Filtering (Xlat.asm)

; This program filters input from the console
; by screening out all ASCII codes less than
; 32 or greater than 127. Uses INT 16h for
; direct keyboard input.

INCLUDE Irvine32.inc

INPUT_LENGTH = 20
.data
validchars BYTE 32 DUP(0) ; invalid chars: 0-31

BYTE 96 DUP(0FFh) ; valid chars: 32-127
BYTE 128 DUP(0) ; invalid chars: 128-255

.code
main PROC

mov ebx,offset validchars
mov ecx,INPUT_LENGTH

getchar:
call ReadChar ; read character into AL
mov dl,al ; save copy in DL
xlat validchars ; look up char in AL
or al,al ; invalid char?
jz getchar ; yes: get another
mov al,dl
call WriteChar ; output character in AL
loop getchar

call Crlf
exit

main ENDP
END main

3

If XLAT returns a value of zero in AL, we skip the character and jump back to the top of the
loop. (When AL is ORed with itself, the Zero flag is set if AL equals 0). If the character is valid,
0FFh is returned in AL, and we call WriteChar to display the character in DL.

Character Encoding

The XLAT instruction provides a simple way to encode data so it cannot be read by unautho-
rized persons. When messages are transferred across telephone lines, for instance, encoding can
be a way of preventing others from reading them. Imagine a table in which all the possible digits
and letters have been rearranged. A program could read each character from standard input, use
XLAT to look it up in a table, and write its encoded value to standard output. A sample table is
as follows:

codetable LABEL BYTE
BYTE 48 DUP(0) ; no translation
BYTE '4590821367' ; ASCII codes 48-57
BYTE 7 DUP (0) ; no translation
BYTE 'GVHZUSOBMIKPJCADLFTYEQNWXR'
BYTE 6 DUP (0) ; no translation
BYTE 'gvhzusobmikpjcadlftyeqnwxr'
BYTE 133 DUP(0) ; no translation

Certain ranges in the table are set to zeros; characters in these ranges are not translated.
The $ character (ASCII 36), for example, is not translated because position 36 in the table con-
tains the value 0.

Sample Program Let’s take a look at a character encoding program that encodes each charac-
ter read from an input file. When running the program, one can redirect standard input from a
file, using the < symbol. For example:

encode < infile

The program output appears on the screen. Output can also be redirect to a file:

encode < infile > outfile

The following example shows a line from an input file that has been encoded:

This is a SECRET Message (read from input file)
Ybmt mt g TUHFUY Juttgou (encoded output)

The program cannot use the keyboard as the standard input device, because it quits looking for
input as soon as the keyboard buffer is empty. The user would have to type fast enough to keep
the keyboard buffer full.

Given some time and effort, a simple encoding scheme like this can be broken. The easiest
way to break the code is to gain access to the program itself and use it to encode a known mes-
sage. But if you can prevent others from running the program, breaking the code takes more
time. Another way to discourage code breaking is to constantly change the code. In World War

4 • Character Translation Methods

II, for example, pilots carried a code book for translating messages, so that message encryption
could be varied on a day-to-day basis.

TITLE Character Encoding Program (Encode.asm)

; This program reads an input file and encodes
; the output using the XLAT instruction.
; To run it, redirect input at the Command prompt:
;
; encode < input.txt
;
; Implemented as a 16-bit application because we can
; use INT 21h function 6 to input characters without
; waiting. See Section 13.2.3 for details.
; Last update: 06/01/02

INCLUDE Irvine16.inc

.data
codetable LABEL BYTE

BYTE 48 DUP(0) ; no translation
BYTE '4590821367 '; ASCII codes 48-57
BYTE 7 DUP (0) ; no translation
BYTE 'GVHZUSOBMIKPJCADLFTYEQNWXR'
BYTE 6 DUP (0) ; no translation
BYTE 'gvhzusobmikpjcadlftyeqnwxr'
BYTE 133 DUP(0) ; no translation

.code
main PROC

mov ax,@data
mov ds,ax
mov bx,OFFSET codetable

getchar:
push bx
mov ah,6 ; input character, don't wait
mov dl,0FFh
int 21h ; call DOS
pop bx
jz quit ; quit, no input waiting
mov dl,al ; save char in DL
xlat ; translate the character
cmp al,0 ; translatable?
je putchar ; no: write it as is
mov dl,al ; yes: move new char to DL

putchar:

5

mov al,dl ; character is in DL
call WriteChar ; write AL to standard output
jmp getchar ; get another char

quit:
exit

main ENDP
END main

6 • Character Translation Methods

