
File I/O in Real-Address
Mode

This article explains how to create, open, read,and write files in 16-bit Real-
address mode. It is the full text of Chapter 12 from the previous edition of
Assembly Language for Intel-Based Computers. Copyright 1999 Prentice-Hall
Publishing, all rights reserved.

12.1 File Manipulation
Introduction
Get/Set File Attribute (43h)
Delete File (41h)
Rename File (56h)
Get/Set File Date/Time (57h)
Find First Matching File (4Eh)
Find Next Matching File (4Fh)
Set Disk Transfer Address (1Ah)

12.2 Application: Display Filenames and Dates
12.3 File I/O Services

Create File (3Ch)
Open File (3Dh)
Close File (3Eh)
Read from File or Device (3Fh)
Write to File or Device (40h)

12.4 Random File Access
Move File Pointer (42h)

12.5 Reading a Bitmap File
12.6 Review Questions
12.7 Programming Exercises

Manipulating Disk Directories

12.1 FILE MANIPULATION

12.1.1 Introduction

Having developed a good understanding of disk file organization, let's now examine the
multitude of function calls relating to files. DOS uses the technique, borrowed from the
UNIX operating system, of using handles to access files and devices. In most cases, there

REAL-MODE FILE PROCESSING2

is no distinction between files and devices such as keyboards and video monitors. A
handle is a 16-bit number used to identify an open file or device. There are five standard
device handles recognized by DOS. Each of these supports redirection at the command
prompt except the error output device:

0 Keyboard (standard input)

1 Console (standard output)

2 Error output

3 Auxiliary device (asynchronous)

4 Printer

These handles are predefined and do not have to be opened before being used. For
example, one can write to the console using handle 1 without any advance preparation.
Each function has a common characteristic: if it fails, the Carry flag is set and an error
code is returned in AX. You can use this error code to display an appropriate message to
the program's user.

Basic File Functions. Let's start by looking at a list of the most commonly used file
functions, defined by a function number placed in AH. All the following functions are
available in high-level languages (see Table 1).

The next set of file manipulation routines allows powerful control of files, often
beyond that allowed at the command prompt. For example, we can hide or unhide a file,
change a normal file to read-only, or change the time and date stamp on a file. We can
also search for all files matching a file specifier with a wildcard character such as *.ASM.

12.1.2 Get/Set File Attribute (43h)

Function 43h can be used to either retrieve or change the attribute of a file. We set a flag
in AL to decide which action to perform. The following input registers are used:

AH 43h

AL (0 = get attribute, 1 = set attribute)

CX New attribute (if AL = 1)

DS:DX Points to an ASCIIZ string with a file specification

The Carry flag is set if the function fails, and the error return codes are 1 (function
code invalid), 2 (file not found), 3 (path not found), and 5 (access denied). If AL = 0 (get
attribute function), the file attribute is returned in CX. The attribute may also indicate a
volume label (08h) or a subdirectory (10h). The following instructions set a file's at-
tributes to hidden and read-only:

.data
filename db "TEST.DOC",0

3

Table 1. Basic File Functions.

Function Description

1Ah Set disk transfer address.

3Ch Create file. Create a new file or set the length of
an existing file to 0 bytes.

3Dh
Open file. Open an existing file for input,
output, or input-output.

3Eh Close file handle.

3Fh Read from file or device. Read a predetermined
number of bytes from a file into an input buffer.

40h Write to file or device. Write a predetermined
number of bytes from memory to a file.

41h Delete file.

42h Move file pointer. Position the file pointer before
reading or writing to a file.

43h Get/Set file attribute.

4Eh Find first matching file.

4Fh Find next matching file.

56h Rename file.

57h Get/set file date and time.

.code
mov ah,43h
mov al,1 ; set file attribute
mov cx,3 ; hidden, read-only
mov dx,offset filename
int 21h
jc display_error

You may want to refer to the discussion of file attributes earlier in Section 11.1.4. Sample
values are shown in the following table. In addition, the archive bit (5) may have been set:

12.1 FILE MANIPULATION

REAL-MODE FILE PROCESSING4

Attribute Value

Normal file
Read-only file
Hidden file
Hidden, read-only file
System file
Hidden, system, read-only file

00
01
02
03
04
07

One reason this function is important is that it allows you to hide a file so it won't
appear when the DIR, DEL, and COPY commands are used. You can also give a file a
read-only attribute to prevent it from being changed. In fact, the only way to delete or
update a read-only file at the DOS command prompt is to first change its attribute to
normal.

12.1.3 Delete File (41h)

To delete a file, set DS:DX to the address of an ASCIIZ string containing a file specifica-
tion. The specification can contain a drive and path name, but wildcard characters are not
allowed. For example, the following code deletes SAMPLE.OBJ from drive B:

.data
filespec db "B:SAMPLE.OBJ",0

.code
mov ah,41h ; delete file
mov dx,offset filespec
int 21h
jc display_error

If DOS fails and the Carry flag is set, the possible error codes are 2 (file not found), 3
(path not found), and 5 (access denied because the file has a read-only attribute). To
delete a file that has a read-only attribute, you must first call Function 43h (change file
mode) to change its attribute.

12.1.4 Rename File (56h)

Function 56h renames a file if you pass a pointer to the current name in DS:DX and a
pointer to the new name in ES:DI. Both names must be ASCIIZ strings, without any
wildcard characters. This function can also be used to move a file from one directory to
another because you can specify a different path for each filename. Moving a file is
different from copying it; the file no longer exists in its original place. If the Carry flag is
set, the possible error codes are 2 (file not found), 3 (path not found), 5 (access denied),
and 11h (not same device). Error 11h occurs when one refers to filenames on different
disk drives. The following routine renames prog1.asm to prog2.asm:

5

.data
oldname db "prog1.asm",0
newname db "prog2.asm",0

.code
mov ah,56h ; rename file
mov dx,offset oldname
mov di,offset newname
int 21h
jc display_error

The following statements move prog1.asm from the current directory to the \asm\progs
directory:

.data
oldname db "prog1.asm",0
newname db "\asm\progs\prog1.asm",0

.code
mov ah,56h ; rename file
mov dx,offset oldname
mov di,offset newname
int 21h
jc display_error

12.1.5 Get/Set File Date/Time (57h)

Function 57h can be used to read or modify the date and time stamps of a file. Both are
automatically updated when a file is modified, but there may be occasions when you wish
to set them to some other value.

The file must already be open before calling this function. If you wish to read the
file's date and time, set AL to 0 and set BX to the file handle. To set the date and time, set
AL to 1, BX to the file handle, CX to the time, and DX to the date. The time and date
values are bit-mapped exactly as they are in the directory. Here, we show the date:

DH DL

Year Month Day
9-15 5-8 0-4

Field:
Bit numbers:

01 000 10 1 10 1 010 10

12.1 FILE MANIPULATION

REAL-MODE FILE PROCESSING6

The seconds are stored in increments of 2. A time of 10:02:02, for example, would be
mapped as

0101000001000001

The year value is assumed to be added to 1980, so the date April 16, 1992 (920416)
would be stored as

0001100010010000

If you simply want to get a file's date and time, Function 4Eh (find first matching file) is
easier to use because it does not require the file to be open.

12.1.6 Find First Matching File (4Eh)

To search for a file in a particular directory, call Function 4Eh (find first matching file).
Pass a pointer to an ASCIIZ file specification in DS:DX and set CX to the attribute of the
files you wish to find. The file specification can include wildcard characters (* and ?),
making this function particularly well suited to searches for multiple files. For example,
to look for all files with an extension of ASM in the C:\ASM\PROGS directory, we would
use the following:

.data
filespec db "C:\ASM\PROGS*.ASM",0

.code
mov ah,4Eh ; find first matching file
mov cx,0 ; find normal files only
mov dx,filespec
int 21h
jc display_error

If a matching file is found, a 43-byte file description is created in memory at the
current disk transfer address (DTA). The location defaults to offset 80h from the PSP, but
we usually reset it to a location within the data segment, using Function 1Ah (set disk
transfer address). The following is a description of the DTA when a matching file has
been found:

7

Offset File Information

0-20 Reserved by DOS

21 Attribute

22-23 Time stamp

24-25 Date stamp

26-29 Size (doubleword)

30-42 File name (null-terminated string)

This function provides a convenient way to get the time and date stamp of a file without
having to open it. If the search fails, the Carry flag is set and AX equals either 2 (invalid
path) or 18 (no more files). The latter means that no matching files were found.

12.1.7 Find Next Matching File (4Fh)

Once Function 4Eh has found the first matching file, all subsequent matches can be found
using Function 4Fh (find next matching file). This presumes that a file specification with a
wildcard character is being used, such as PROG?.EXE or *.ASM. Function 4Fh uses the
same disk transfer address as Function 4Eh and updates it with information about each
new file that is found. When Function 4Fh finally fails to find another matching file, the
Carry flag is set. For a list of the file information in the DTA, see the explanation of
Function 4Eh (find first matching file). To call Function 4Fh, you need only place the
function number in AH:

mov ah,4Fh ; find next matching file
int 21h
jc no_more_files

12.1.8 Set Disk Transfer Address (1Ah)

The disk transfer address (DTA) is an area set aside for the transfer of file data to
memory. Originally, it was used by early DOS file functions, where file control blocks
were used to access disk files. Later, its primary use was to provide a buffer for functions
4Eh (find first matching file) and 4Fh (find next matching file).

Function 1Ah can be used to set the disk transfer address to a location in the data
segment. Otherwise, the DTA defaults to offset 80h from the start of the PSP. Most of the
time, we reset the DTA to a buffer inside our program because the default location in the

12.2 APPLICATION: DISPLAY FILENAMES AND DATES

REAL-MODE FILE PROCESSING8

PSP is used for other purposes (such as the program's command line parameters). The
following statements, for example, set the DTA to a buffer called myDTA:

mov ah,1Ah ; set DTA
mov dx,offset myDTA ; to buffer in data segment
int 21h

12.2 APPLICATION: DISPLAY FILENAMES AND DATES

Using what we have learned about finding matching files and file date/time formats, we
can apply these to a program called Date Stamp (Example 1) that looks for a file or group
of files and displays each name and date. This should provide some insight on how the
DIR command works in DOS. We would also like to be able to enter a file specification on
the program's command line that includes wildcard characters. The Date Stamp program
does the following:

• It retrieves the filename typed on the command line. If no name is found, a message is
displayed showing the program syntax.

• It finds the first matching file. If none is found, an appropriate message is displayed
before returning to DOS.

• It decodes the date stamp and stores the day, month, and year in variables.

• It displays the filename and date.

• It finds the next matching file. The last three steps are repeated until no more files are
found.

Example 1. The Date Stamp Program.

title Date Stamp Program (DAT.ASM)

; This program displays the name and date stamp for
; each file matching a file specification entered
; on the DOS command line. Uses macros and a
; structure.
; Last update: 10/14/2002

INCLUDE Irvine16.inc

FileControlBlock struc
 db 22 dup(?) ; header info - not used

9

 fileTime dw ? ; time stamp of file
 fileDate dw ? ; date stamp of file
 fileSize dd ? ; size of file: not used
 fileName db 13 dup(0) ; name of file found by DOS
FileControlBlock ends

mWriteint macro value, radix:=<10>
 push ax
 push bx
 mov ax,value
 mov bx,radix
 call WriteDec
 pop bx
 pop ax
endm

mWritestring macro aString
 push dx
 mov dx,offset aString
 call WriteString
 pop dx
endm
;---
.data
filespec db 40 dup(0) ; DOS command line
heading db "Date Stamp Program (DAT.EXE)"
 db 0dh,0ah,0dh,0ah,0
helpMsg db "The correct syntax is: "
 db "DAT [d:][path]filename[.ext]",0dh,0ah,0
DTA FileControlBlock <>
;---
.code
DOS_error PROTO

main proc
 mov bx,ds
 mov ax,@data
 mov ds,ax
 mov es,ax
 mov dx,offset filespec ; get filespec from
 call Get_Commandtail ; the command line
 jc A2 ; quit if none found

12.2 APPLICATION: DISPLAY FILENAMES AND DATES

REAL-MODE FILE PROCESSING10

 mWritestring heading
 call findFirst ; find first matching file
 jc A3 ; quit if none found

A1: call decodeDate ; separate the date stamp
 call display_filename
 mov ah,4Fh ; find next matching file
 int 21h
 jnc A1 ; continue searching
 jmp A3 ; until no more matches

A2: mWritestring helpMsg ; display help

A3: exit
main endp

; Find first file that matches the file
; specification entered on command line.

findFirst proc
 mov ah,1Ah ; set transfer address
 mov dx,offset DTA
 int 21h
 mov ah,4Eh ; find first matching file
 mov cx,0 ; normal attributes only
 mov dx,offset filespec
 int 21h
 jnc B1 ; if DOS error occurred,
 call DOS_error ; display a message
B1: ret
findFirst endp

; Translate the encoded bit format of a file's
; date stamp.

.data
month dw ? ; temporary storage for
day dw ? ; month, day, year
year dw ?
.code
decodeDate proc
 mov bx,offset DTA.fileDate

11

 mov dx,[bx] ; get the day
 mov ax,dx
 and ax,001Fh ; clear bits 5-15
 mov day,ax
 mov ax,dx ; get the month
 shr ax,5 ; shift right 5 bits
 and ax,000Fh ; clear bits 4-15
 mov month,ax
 mov ax,dx ; get the year
 shr ax,9 ; shift right 9 bits
 add ax,1980 ; year is relative to 1980
 mov year,ax ; save the year
 ret
decodeDate endp

; Write both filename and date stamp to console.

display_filename proc
 mWritestring DTA.fileName
 call fill_with_spaces
 mWriteint month
 call write_dash ; display a "-"
 mWriteint day
 call write_dash ; display a "-"
 mWriteint year
 call Crlf
 ret
display_filename endp

; Pad right side of the filename with spaces.

fill_with_spaces proc
 mov cx,15 ; max file size plus 3 spaces
 ;mov di,offset DTA.fileName ; get length
 ;call Str_length ; AX = length of filename

 INVOKE Str_length, ADDR DTA.fileName
 sub cx,ax ; loop counter
 mov ah,2 ; display character
 mov dl,20h ; space
E1: int 21h ; write spaces
 loop E1 ; until CX = 0

12.2 APPLICATION: DISPLAY FILENAMES AND DATES

REAL-MODE FILE PROCESSING12

 ret
fill_with_spaces endp

write_dash proc ; write a hyphen
 push ax
 push dx
 mov ah,2
 mov dl,'-'
 int 21h
 pop dx
 pop ax
 ret
write_dash endp
end main

Main Procedure. The main procedure calls routines to retrieve the command tail and find
the first matching file. From that point on, it is essentially a loop that decodes and
displays the date and looks for other matching files.

FindFirst Procedure. The FindFirst procedure calls Function 1Ah to set the disk transfer
address, where file information is stored when matching files are found. We call Function
4Eh to find the first matching file and return to main. The Carry flag is set if no matching
files are found.

DecodeDate Procedure. The DecodeDate procedure is the most complex one because
each field (day, month, year) must be masked and shifted to the right. As each value is
isolated, it is stored in a variable. The day of the week occupies bits 0-4, so we clear bits
5-15 and move the result to day. The month number is stored in bits 5-8, so AX is shifted
5 bits to the right. We clear all other bits and store the result in month. The year number is
stored in bits 9-15, so we shift AX 9 bits to the right. We add 80 because the date is
always relative to 1980.

12.3 FILE I/O SERVICES

12.3.1 Create File (3Ch)

To create a new file or to truncate an existing file to 0 bytes, Function 3Ch should be
used. The file is automatically opened for both reading and writing, but that can be
changed by calling Function 43h (change file mode) after the file is open. DS:DX must
point to an ASCIIZ string with the name of the file, and CX should contain one or more of
the following attribute values:

00h Normal file

01h Read-only file

13

02h Hidden file

04h System file (rarely used)

A sample routine that creates a file with a normal attribute is shown here. The file is
created on the default drive in the current directory. We would pass the offset of the
filename to the procedure in DX:

CreateFile proc ; Input: DX points to filename
push cx
push dx
mov ah,3Ch ; function: create file
mov cx,0 ; normal attribute
int 21h ; call DOS
pop dx
pop cx
ret

CreateFile endp

The following statements show how CreateFile might be called:

.data
newfile db "NEWFILE.DOC",0
handle dw ?

.code
mov dx,offset newfile ; pass the filename offset
call CreateFile ; create the file
jc display_error ; error? display a message
mov handle,ax ; no error: save the handle

If the file is opened successfully, a 16-bit file handle is returned in AX. The value is 5 if
this is the first file opened, but it is larger when other files are already open.

Protecting Existing Files. One disadvantage of using Function 3Ch (create file) is that
one might inadvertently destroy an existing file with the same name. There are a couple
of solutions to this problem. You can attempt to open the file for input, using Function
3Dh (open file). If the Carry flag is set and AX = 2 (file not found), you can safely use the
create file function.

Another solution is to use Function 5Bh (create new file). It aborts and returns error
50h if the file already exists. For example:

.data
filename db "FILE1.DOC",0

12.3 FILE I/O SERVICES

REAL-MODE FILE PROCESSING14

.code
mov ah,5Bh ; create new file
mov cx,0 ; normal attribute
mov dx,offset filename
int 21h
jc error_routine

Error Codes. If DOS sets the Carry flag, the error number it returns should be 3, 4, or 5.
Error 3 (path not found) means the file specifier pointed to by DX probably contains a
nonexistent directory name. For example, you may have specified the following, when in
fact the subdirectory name is ASM, not ASMS:

file1 db 'C:\ASMS\FILE1.ASM',0

Error 4 (too many open files) occurs when you have exceeded the maximum number
of open files set by DOS. By default, DOS allows only eight open files. Since the first five
of these are in use by DOS (for standard file handles), that leaves only three files for use
by application programs. You can change this number with the FILES command in the
CONFIG.SYS file (activated when you boot the system). For example,

files=32

After deducting the five handles used by DOS, there would be 27 handles available
for programs to use. But DOS still allows each program to have a maximum of 20 open
files. It is possible to change this maximum value by calling INT 21h, Function 67h: BX
should contain the number of desired handles (1 to 65,534). The following statements set
the maximum to 30 files per program:

mov ah,67h
mov bx,30
int 21h

Error 5 (access denied) indicates that you may be trying to create a file that already
exists and has a read-only attribute. You may be trying to create a file with the same name
as a subdirectory, or you may also be trying to add a new entry to a root directory that is
already full.

In some versions of DOS, Error 2 (file not found) is generated if you leave a carriage
return at the end of a filename.

12.3.2 Open File (3Dh)

Function 3Dh opens an existing file in one of three modes: input, output, or input-output.
AL contains the file mode to be used, and DS:DX points to a filename. Normal and hidden
files can be opened. If the open is successful, a valid file handle is returned in AX:

15

.data
filename db 'A:\FILE1.DOC',0
infilehandle dw ?

.code
mov ah,3Dh ; function: open file
mov al,0 ; choose the input mode
mov dx,offset filename
int 21h ; call DOS
jc display_error ; error? display a message
mov infilehandle,ax ; no error: save the handle

File Mode. The file mode placed in AL can have one of three values:

AL Mode

0 Input (read only)

1 Output (write only)

2 Input-output

To open a file in output mode for sequential writing, Function 3Ch (create file) is
probably best. On the other hand, to read and write data to a file, Function 3Dh (open file)
is best. Random-access file I/O requires Function 3Dh.

Error Codes. If CF = 1, AX contains one of the following error codes: Error 1 (invalid
function number) means you are trying to share a file without having loaded the SHARE
program. Error 2 (file not found) indicates that DOS was not able to find the requested
file. Error 3 (path not found) means you specified an incorrect directory name in the
filename's path. Error 4 (too many open files) indicates that too many files are currently
open. Error 5 (access denied) means the file may be set to read-only, or it may be a
subdirectory or volume name.

12.3.3 Close File (3Eh)

To close a file, call Function 3Eh and place the file's handle in BX. This function flushes
DOS's internal file buffer by writing any remaining data to disk and makes the file handle
available to other files. If the file has been written to, it is saved with a new file size, time
stamp, and date stamp. The following instructions close the file identified by
infilehandle:

.data
infile db 'B:\FILE1.DOC',0
infilehandle dw ?

.code

12.3 FILE I/O SERVICES

REAL-MODE FILE PROCESSING16

mov ah,3Eh ; close file handle
mov bx,infilehandle
int 21h
jc display_error

The only possible error code is 6 (invalid handle), which means the file handle in BX
does not refer to an open file.

12.3.4 Read From File or Device (3Fh)

In Chapter 5 we showed how to use Function 3Fh to read from standard input, which
ordinarily is the keyboard. This function is very flexible because it can easily read from a
disk file. First, you have to call Function 3Dh to open the file for input; then, using the
file handle obtained by this call, you can call Function 3Fh and read from the open file.

After calling this function, if the Carry flag is set, the error code is either 5 or 6.
Error 5 (access denied) probably means the file was open in the output mode, and error 6
(invalid handle) indicates that the file handle passed in BX does not refer to an open file.
If the Carry flag is clear after the operation, AX contains the number of bytes read.

The information returned by Function 3Fh is useful when checking for end of file. If
there is no more data in the file, the value in AX is less than the number of bytes that were
requested (in CX). In the following code example, we jump to a label called Exit if the
end of the file has been reached:

.data
bufferSize = 512
filehandle dw ?
buffer db bufferSize dup(0)

.code
mov ah,3Fh ; read from file or device
mov bx,filehandle ; BX = file handle
mov cx,bufferize ; number of bytes to read
mov dx,offset buffer ; point to buffer
int 21h ; read the data
jc Display_error ; error if CF = 1
cmp ax,cx ; compare to bytes requested
jb Exit ; yes: quit reading

12.3.5 Write to File or Device (40h)

Function 40h is used when writing to a device or a file. Place a valid file handle in BX,
place the number of bytes to write in CX, and point DS:DX to the buffer where the data
are stored. DOS automatically updates the file pointer after writing to the file, so the next

17

call to Function 40h will write beyond the current position. In the following example, we
write the contents of buffer to the file identified by handle:

.data
buffer db 100h dup(?) ; output buffer
handle dw ? ; file handle

.code
write_to_file:

mov ah,40h ; write to file/device
mov bx,handle ; file handle returned by OPEN
mov cx,100h ; number of bytes to write
mov dx,offset buffer ; DX points to the buffer
int 21h ; call DOS
jc display_error ; error? display message.
cmp ax,100h ; all bytes written?
jne close_file ; no: disk is full

If the Carry flag is set, AX contains error code 5 or 6. Error 5 (access denied) means
the file is open in the input mode, or the file has a read-only attribute. Error 6 (invalid
handle) means the number in BX does not refer to a currently open file handle. If the
Carry flag is clear but AX contains a number that is less than the requested number of
bytes, an input-output error may have occurred. For example, the disk could be full.

12.4 RANDOM FILE ACCESS

Random file processing is surprisingly simple in assembly language. Only one new
function needs to be added to what we already know—Function 42h (move file pointer),
which makes it possible to locate any record in a file. Each high-level language tends to
have a specific syntax for random file processing. DOS, on the other hand, makes very
little distinction between sequential and random files.

Random access is possible only when the records in a file have a fixed length. This is
because the record length is used to calculate each record's offset from the beginning of
the file. A text file usually has variable-length records, each delimited by an end-of-line
marker (0Dh, 0Ah). There is no practical way to locate individual variable-length records
because their offsets are not determined by their lengths.

In the following illustration, File1 has fixed-length records, so we calculate the
beginning of each record by multiplying the record number minus 1 by 20. File2 stores
the same data in a comma-delimited text file. There are comma delimiters between fields,
and end-of-line markers (0Dh,0Ah) at the end of each record. The position of any one

12.4 RANDOM FILE ACCESS

REAL-MODE FILE PROCESSING18

record cannot be calculated because each record has a different length. Record 2 begins
at offset 000F, record 3 at offset 0022, and so on:

File1: Record offsets (hexadecimal): 0000,0014,0028,003C:

1 2 3 4
0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0
1000AU 00300H1003BAKER 02000B2001DAVIDSON 40000H3000GONZALEZ 50000A

File2: Record offsets (hexadecimal): 0000,000F,0022,0039:

1 2 3 4
0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0
1000,AU,300,H..1003,BAKER,2000,B..2001,DAVIDSON,40000,H..3000,GONZALEZ,50000,A..

12.4.1 Move File Pointer (42h)

Function 42h moves the file pointer to a new location (the file must already be open). The
input registers are

AH 42h

AL Method code (type of offset)

BX File handle

CX Offset, high

DX Offset, low

The offset can be relative to the beginning of the file, the end of the file, or the
current file position. When the function is called, AL contains a method code that identi-
fies how the pointer will be set, and CX:DX contains a 32-bit offset:

AL Contents of CX:DX

0 Offset from the beginning of the file

1 Offset from the current location

2 Offset from the end of the file

Result Values. If the Carry flag is set after the function is called, DOS returns either Error
1 (invalid function number) or Error 6 (invalid handle). If the operation is successful, the
Carry flag is cleared and DX:AX returns the new location of the file pointer relative to the
start of the file (regardless of which method code was used).

Example: Locating a Record. Suppose we are processing a random file with 80-byte
records, and we want to find a specific record. The LSEEK procedure shown in Example 2

19

moves the file pointer to the position implied by the record number passed in AX. Assum-
ing that records are numbered beginning at 0, we multiply the record number by the
record length to find its offset in the file:

Example 2. Locating a Record with the Lseek Procedure.

Lseek proc ; AX = record number
push bx
push cx
mov bx,80 ; DX:AX = (AX * 80)
mul bx
mov cx,dx ; upper half of offset in CX
mov dx,ax ; lower half of offset in DX
mov ah,42h
mov al,0 ; method: offset from beginning
mov bx,handle
int 21h ; locate the file pointer
pop cx
pop bx
ret

Lseek endp

For example, record 9 would be located at offset 720 and record 0 would be located at
offset 0:

Offset = 9 * 80 = 720
Offset = 0 * 80 = 0

The ReadRecord procedure in Example 3 uses Function 3Fh to read 80 bytes from the
file. To read a record, we simply place the desired record number in AX and call both
Lseek and ReadRecord:

mov ax,record_number
call Lseek
call ReadRecord

Example 3. The ReadRecord Procedure.

ReadRecord proc
pusha
mov ah,3Fh ; read from file or device
mov bx,handle ; file/device handle
mov cx,80 ; number of bytes to read

12.4 RANDOM FILE ACCESS

REAL-MODE FILE PROCESSING20

mov dx,offset buffer
int 21h
popa
ret

ReadRecord endp

Example: Append to a File. Function 42h is also used to append to a file. The file may be
either a text file with variable-length records or a file with fixed-length records. The trick
is to use method code 2, to position the file pointer at the end of the file before writing
any new records. The SeekEOF procedure in Example 4 does this.

Example 4. The SeekEOF Procedure.

SeekEOF proc
pusha
mov ah,42h ; position file pointer
mov al,2 ; relative to end of file
mov bx,handle
mov cx,0 ; offset, high
mov dx,0 ; offset, low
int 21h
popa
ret

SeekEOF endp

Using a Negative Offset. If the method code in AL is either 1 or 2, the offset value can be
either positive or negative, presenting some interesting possibilities. For example, one
could back up the file pointer from the current position (using method 1) and reread a
record. This would even work for a text file with variable-length records:

mov ah,42h ; function: move pointer
mov al,1
; method: relative to current position
mov bx,handle
mov cx,0
mov dx,-10 ; back up 10 bytes
int 21h
jc error_routine ; exit if there is an error
mov ah,3Fh ; function: read file
mov cx,10 ; read 10 bytes
mov dx,offset inbuf
int 21h

21

12.5 READING A BITMAP FILE

In this section we present a procedure called ShowBMP that loads a Windows-style
bitmap from a file and displays it on the screen. The bitmap can have a resolution up to
320x200, with 256 colors. See the program in Example 5.

When the ShowBMP procedure is called, DS:DX must point to a null-terminated
filename. Inside the procedure, we call the OpenInputFile procedure from the link library
and quit if the procedure cannot open the file. Next, the ShowBMP procedure reads the
bitmap file’s header record. The ReadHeader procedure reads 54 bytes into a buffer and
calls the CheckValid procedure to make sure the bitmap header is recognized.

The CheckValid procedure looks for the string “BM” at the start of the file, and if it
finds it, returns. The program calls GetBMPInfo to read the bitmap header record. For
example, the header contains the offset of the beginning of the graphic image, the number
of colors in the bitmap, and the bitmap’s horizontal and vertical resoltuion

The ReadPal procedure reads the graphic pallete into memory. The procedure reads
a count of the number of colors and loads the complete palette into a variable. The InitVid
procedure inializes the video display into graphcis mode, and the LoadBMP procedure
load sand displays the bitmap file. The LoadBMP procedure takes into account that BMP
files store graphics images upside-down. The file is read one graphics line at a time,
which tends to slow the program down.

This program is just a quick demonstration of the technque of loading bitmaps, but
with some experimentation, you should be able to load and display a bitmap anywhere on
the screen.

Example 5. Reading and Displaying a Bitmap File.

; Bitmap Display Program (bitmap.asm)

; This program demonstrates the ShowBMP procedure from Section 12.5
; in "Assembly Language for Intel-Based Computers" by Kip R. Irvine.
; (Third Edition)

; Implementation Notes:
; The bitmap size must be no larger than 320x200. It may be 16-color
; or 256-color. Two test files are supplied with this program. Select
; either one by changing the filename variable at label TEST1.
; The program will look for the bitmap file in the same directory as
; the EXE file. The filename cannot be longer than 8 characters, plus
; the BMP extension.

INCLUDE Irvine16.inc

12.5 READING A BITMAP FILE

REAL-MODE FILE PROCESSING22

Open_infile PROTO
Close_file PROTO

.data
; Two demonstration files supplied with this program:
filename1 DB "16color.bmp",0
filename2 DB "256color.bmp",0
vmode DB ?

.code
main proc
 mov ax,@data
 mov ds,ax

; Get the current video mode and save it in a variable
 mov ah,0Fh
 int 10h
 mov vmode,al

TEST1:
 mov dx,offset filename2 ; select the bitmap file
 call ShowBMP ; show the bitmap

 mov ah,0 ; wait for key
 int 16h

; Restore the startup video mode and exit to OS
 mov ah,0
 mov al,vmode
 int 10h

 mov ax,4c00h
 int 21h
main endp

;---
ShowBMP proc

; This procedure procedure sets loads and displays a Windows bitmap
; file (extension BMP). The maximum resolution is 320x200, with
; 256 colors. By Diego Escala, Miami, Florida, used by permission.

23

; Receives: DS:DX points to an ASCIIZ string containing the BMP file path.
; Returns: nothing
;---
pusha ; Save registers
call Open_infile ; Open file pointed to by DS:DX
jc FileErr ; Error? Display error message and quit
mov bx,ax ; Put the file handle in BX
call ReadHeader ; Reads the 54-byte header containing file info
jc InvalidBMP ; Not a valid BMP file? Show error and quit
call ReadPal ; Read the BMP's palette and put it in a buffer
push es
call InitVid ; Set up the display for 320x200 VGA graphics
call SendPal ; Send the palette to the video registers
call LoadBMP ; Load the graphic and display it
call Close_file ; Close the file
pop es

jmp ProcDone

FileErr:
mov ah,9
mov dx,offset msgFileErr
int 21h
jmp ProcDone

InvalidBMP:
mov ah,9
mov dx,offset msgInvBMP
int 21h

ProcDone:
popa ; Restore registers
ret
ShowBMP endp

; Check the first two bytes of the file. If they do not
; match the standard beginning of a BMP header ("BM"),
; the carry flag is set.

CheckValid proc
clc
mov si,offset Header

12.5 READING A BITMAP FILE

REAL-MODE FILE PROCESSING24

mov di,offset BMPStart
mov cx,2 ; BMP ID is 2 bytes long.
CVloop:
mov al,[si] ; Get a byte from the header.
mov dl,[di]
cmp al,dl ; Is it what it should be?
jne NotValid ; If not, set the carry flag.
inc si
inc di
loop CVloop

jmp CVdone

NotValid:
stc

CVdone:
ret
CheckValid endp

GetBMPInfo proc
; This procedure pulls some important BMP info from the header
; and puts it in the appropriate variables.

mov ax,header[0Ah] ; AX = Offset of the beginning of the graphic.
sub ax,54 ; Subtract the length of the header
shr ax,2 ; and divide by 4
mov PalSize,ax ; to get the number of colors in the BMP
 ; (Each palette entry is 4 bytes long).
mov ax,header[12h] ; AX = Horizontal resolution (width) of BMP.
mov BMPWidth,ax ; Store it.
mov ax,header[16h] ; AX = Vertical resolution (height) of BMP.
mov BMPHeight,ax ; Store it.
ret
GetBMPInfo endp

InitVid proc
; This procedure initializes the video mode and makes ES point to
; video memory.

mov ax,13h

25

int 10h ; Set video mode to 320x200x256.
push 0A000h
pop es ; ES = A000h (video segment).
ret
InitVid endp

LoadBMP proc
; BMP graphics are saved upside-down. This procedure reads the graphic
; line by line, displaying the lines from bottom to top. The line at
; which it starts depends on the vertical resolution, so the top-left
; corner of the graphic will always be at the top-left corner of the screen.

; The video memory is a two-dimensional array of memory bytes which
; can be addressed and modified individually. Each byte represents
; a pixel on the screen, and each byte contains the color of the
; pixel at that location.

mov cx,BMPHeight ; We're going to display that many lines
ShowLoop:
push cx
mov di,cx ; Make a copy of CX
shl cx,6 ; Multiply CX by 64
shl di,8 ; Multiply DI by 256
add di,cx ; DI = CX * 320, and points to the first
 ; pixel on the desired screen line.

mov ah,3fh
mov cx,BMPWidth
mov dx,offset ScrLine
int 21h ; Read one line into the buffer.

cld ; Clear direction flag, for movsb.
mov cx,BMPWidth
mov si,offset ScrLine
rep movsb ; Copy line in buffer to screen.

pop cx
loop ShowLoop
ret
LoadBMP endp

12.5 READING A BITMAP FILE

REAL-MODE FILE PROCESSING26

; This procedure checks to make sure the file is a valid BMP,
; and gets some information about the graphic.

ReadHeader proc
mov ah,3fh
mov cx,54
mov dx,offset Header
int 21h ; Read file header into buffer.

call CheckValid ; Is it a valid BMP file?
jc RHdone ; No? Quit.
call GetBMPInfo ; Otherwise, process the header.

RHdone:
ret
ReadHeader endp

; Read the video palette.

ReadPal proc
mov ah,3fh
mov cx,PalSize ; CX = Number of colors in palette.
shl cx,2 ; CX = Multiply by 4 to get size (in bytes)
 ; of palette.
mov dx,offset palBuff
int 21h ; Put the palette into the buffer.
ret
ReadPal endp

SendPal proc
; This procedure goes through the palette buffer, sending information about
; the palette to the video registers. One byte is sent out
; port 3C8h, containing the number of the first color in the palette that
; will be sent (0=the first color). Then, RGB information about the colors
; (any number of colors) is sent out port 3C9h.

mov si,offset palBuff ; Point to buffer containing palette.
mov cx,PalSize ; CX = Number of colors to send.
mov dx,3c8h
mov al,0 ; We will start at 0.
out dx,al
inc dx ; DX = 3C9h.

27

sndLoop:
; Note: Colors in a BMP file are saved as BGR values rather than RGB.

mov al,[si+2] ; Get red value.
shr al,2 ; Max. is 255, but video only allows
 ; values of up to 63. Dividing by 4
 ; gives a good value.
out dx,al ; Send it.
mov al,[si+1] ; Get green value.
shr al,2
out dx,al ; Send it.
mov al,[si] ; Get blue value.
shr al,2
out dx,al ; Send it.

add si,4 ; Point to next color.
 ; (There is a null chr. after every color.)
loop sndLoop
ret
SendPal endp

.data
Header label word
HeadBuff db 54 dup('H')
palBuff db 1024 dup('P')
ScrLine db 320 dup(0)
BMPStart db 'BM'
PalSize dw ?
BMPHeight dw ?
BMPWidth dw ?
msgInvBMP db "Not a valid BMP file.",7,0Dh,0Ah,24h
msgFileErr db "Error opening file.",7,0Dh,0Ah,24h
end main

12.6 REVIEW QUESTIONS

1. If a file currently does not exist, what will happen if function 3Dh opens the file in the
output mode?

2. If a file is created using function 3Ch, can it be both written to and read from before it is
closed? What if it was created with a read-only attribute?

12.6 REVIEW QUESTIONS

REAL-MODE FILE PROCESSING28

3. If you want to create a new file but do not want to accidentally erase an existing file with
the same name, what steps would your program take?

4. For each of the following error codes returned when INT 21h is called, write a single-
sentence explanation of what probably caused the error:

Error Number Function Being Called

03h 56h (Rename file)

05h 41h (Delete file)

06h 57h (Set date/time)

10h 3Ah (Remove directory)

11h 56h (Rename file)

12h 4Eh (Find first matching file)

5. What do the following instructions imply?

.data
filename db 'FIRST.RND',0

.code
mov ah,3Dh
mov al,2
mov dx,offset filename
int 21h

6. When a file is closed, do you need to point DX to its filename?

7. What do you think the effect of the following instructions would be?

mov ah,3Eh
mov bx,0
int 21h

8. When function 3Eh (read from file or device) is called, what does it mean when the Carry
flag is set and AX = 6?

9. When function 3Eh is called (with CX = 80h), what does it mean when DOS clears the
Carry flag and returns a value of 20h in AX?

10. When function 3Eh is used to read from the keyboard and CX = 0Ah, what will be the
contents of the input buffer when the following string is input?

1234567890

29

11. When function 40h writes a string to the console, must the string be terminated by a zero
byte?

12. When using function 40h to write to an output file, does DOS automatically update the
file pointer?

13. If you have just read a record from a random file and you want to rewrite it back to the
same position in the file, what steps must you take?

14. Is it possible to move the file pointer within a text file?

15. Write the necessary instructions to locate the file pointer 20 bytes beyond the end of the
file identified by filehandle.

16. What is the offset of the 20th record in a file that contains 50-byte fixed-length records?

17. What is the purpose of buffering input records?

18. Assuming that bits 0-4 hold a department number and bits 5-7 hold a store number within
the following bit-mapped field, what are the values shown here?

11000101 store = department =
00101001 store = department =
01010101 store = department =

19. The following WRITE_BUFFER procedure is supposed to write the contents of buffer to
the file identified by filehandle. The variable buflen contains the current length of the
buffer. If the disk is full, the procedure should print an appropriate message. What is
wrong with the procedure's logic?

.data
filehandle dw ?
buflen dw ?
buffer db 80 dup(?)
message db 'Disk is full.$'

.code
write_buffer proc

mov ah,40h
mov bx,filehandle
mov cx,buflen
mov dx,offset buffer
int 21h
jnc L1
mov dx,offset message
call display

L1: ret
write_buffer endp

12.7 PROGRAMMING EXERCISES

REAL-MODE FILE PROCESSING30

12.7 PROGRAMMING EXERCISES

1. The "Touch" Utility

For a long time, programmers have used a tool called touch that reads a file specifier on
the command line, including wildcards, and changes the date/time stamp of all matching
files to the current date and time. Write this program in assembly language. If, for
example, the user types the following command line, all files in the current directory with
an extension of ASM will be updated:

touch *.asm

One way this program might be useful is, when distributing a set of files to customers for
the release of a product, you could assign the same date and time to all files.

2. Text Matching Program

Write a program that opens a text file containing up to 60K bytes and performs a case-
insensitive search for a string. The string and the filename are typed on the command line.
Display each line from the file on which the string appears and prefix each line with a
line number. For example:

> search line file1.txt

2: This is line 2.
10: On line 10, we have even more text.
11: This is a single text line that is even longer.

3. Enhanced Text Matching Program

Improve the text matching program from the previous exercise as follows:

• Allow wildcard characters in the file specification, so multiple files may be scanned
for the same string.

• Include a command-line option to display filenames only. The command should be +/
–, the same one used by the grep utility supplied with Turbo Assembler. A sample
command line that displays the names of all ASM files containing the string "xlat" is

search -l+ xlat *.asm

4. File Listing Program

Write a program that reads a text file into a buffer and displays the first 24 lines of text.
Write the text directly to video memory for the best performance. Provide the following
keyboard command functions:

31

Key Function

PgUp Scroll up 24 lines

PgDn Scroll down 24 lines

UpArrow Scroll up 1 line

DnArrow Scroll down 1 line

Esc Exit to DOS

5. Random File Creation Program

Write a program that creates a random file containing student academic information,
using data entered from the console. Each record is 27 bytes long, and there should be at
least 20 records. The record format is shown here:

Field Column

Student number 1

Last name 6

Course taken 19

Number of credits 27

Grade 28

Here is some sample data, to which you should add at least 12 more records:

10024ADAMS ENG 11003A
10123BEAZLIE CIS 23014B
10200BOOKER MAC 11325A
10201BOZEK BUS 30023B
10330CHARLES MUS 23003C
10405DANIELS ART 10022A
10524GONZALEZ CHM 40004A
10645HART ENG 11003B

6. Student File Maintenance Program

Using the file created in the previous exercise, write a random file update program that
displays the following menu:

STUDENT FILE MAINTENANCE

S Show a single record
A Add a new record
C Change (edit) a record
D Delete a record

12.7 PROGRAMMING EXERCISES

REAL-MODE FILE PROCESSING32

E Exit program

The user may select records by record number. After each of the menu functions is
carried out, return to the menu. Test the program with multiple additions, deletions, and
changes to records.

7. Enhanced Sector Display Program

Using the Sector Display program from the Chapter 11 Exercises as a starting point, add
the following enhancement: As a sector is displayed, let the operator press [F3] to write
the sector to an output file. Prompt for the filename, and if it already exists, append the
current sector to the end of the file. This helps to make the program a useful tool for
recovering lost sectors on a disk, as the sectors can be reconverted into files.

12.7.1 Manipulating Disk Directories

1. Search for Subdirectories

Write a procedure that searches for all entries in a disk's root directory with an attribute
of 10h (subdirectory name). Display the names.

2. Display a Subdirectory

Write a procedure that finds the first subdirectory entry in the root directory, moves to the
subdirectory, and displays a list of all its files.

3. Recursive Subdirectory Display

(Requires knowledge of tree searching methods.) Write a recursive procedure called
ShowTree that locates and displays the name of each subdirectory in the current direc-
tory. For each subdirectory, locate and display all its subdirectories. Use a depth-first
search method. For example, print out the directory tree in the following manner:

A1
A1B1

A1B1C1
A1B1C2

A1B2
A1B3

A1B3C1
A1B3C2

A2
A2B1
A2B2

A3
A3B1

33

According to this listing, the root directory contains A1, A2, and A3, and A1 contains
A1B1, A1B2, and A1B3. Directory A1B1 contains A1B1C1 and A1B1C2, and so on.

4. Showing File Times and Sizes

Enhance the Date Stamp program from Example 1 earlier in this chapter so that it also
displays each file's time and size.

5. Sorting by Filename

Enhance the Date Stamp program from Example 1 earlier in this chapter by reading the
directory into an array, sorting the array by filename, and displaying the array.

6. Sort by Date and Time

Enhance the Date Stamp program from Example 1 earlier in this chapter by reading the
directory into an array, sorting the array by date and time, and displaying the array.

7. Purge Multiple Files

Write a program that takes a file specification from the command line, displays the name
of each matching file, and asks if the file is to be deleted. When the user enters Y next to
any filename, delete the file.

8. Search for Files by Date

Write a program that searches for all files in the current directory that have a date stamp
that is earlier than the current system date. Displays the names of the matching files. To
obtain the system date, call INT 21h function 2Ah. The year is returned in CX, the month
in DH, and the day in DL. For example, October 12, 1990, would be returned as:

CX = 07C6h, DH = 0Ah, DL = 0Ch

9. File Hide and Unhide

Write two programs: hide.exe, which hides all files matching a file specifier, and
unhide.exe, which unhides all matching files. Only files in the current directory are
affected. Output from each program should be a listing of the files that have been hidden
or unhidden.

These programs, which have been available as shareware utilities for many years, are
tremendously useful. A major feature of HIDE is that you can protect important files from
being deleted by the DOS DEL command. Another is that the average computer user does
not know how to view the contents of these files. One good application has to do with
deleting all files in a directory except a particular file. First, hide the chosen file; next,
delete all remaining files in the directory; and finally, unhide the original file.

Both programs should read a file specifier from the command line, which might be a
single filename, a complete path, or a wildcard filename, such as *.ZIP.

