File1/O in Real-Address

12.1

Mode

Thisarticle explains how to create, open, read,and write filesin 16-bit Real-
address mode. It isthe full text of Chapter 12 from the previous edition of
Assembly Language for Intel-Based Computers. Copyright 1999 Prentice-Hall
Publishing, all rights reserved.

12.1 File Manipulation
Introduction
Get/Set File Attribute (43h)
Delete File (41h)
Rename File (56h)
Get/Set File Date/Time (57h)
Find First Matching File (4Eh)
Find Next Matching File (4Fh)
Set Disk Transfer Address (1Ah)
12.2 Application: Display Filenames and Dates
12.3 File /O Services
Create File (3Ch)
Open File (3Dh)
Close File (3Eh)
Read from File or Device (3Fh)
Write to File or Device (40h)
12.4 Random File Access
Move File Pointer (42h)
12.5 Reading aBitmap File
12.6 Review Questions
12.7 Programming Exercises
Manipulating Disk Directories

FILE MANIPULATION

121.1

Introduction

Having devel oped a good understanding of disk file organization, let's now examine the
multitude of function callsrelating to files. DOS uses the technique, borrowed from the
UNIX operating system, of using handlesto access files and devices. In most cases, there

REAL-MODE FILE PROCESSING

12.1.2

isno distinction between files and devices such as keyboards and video monitors. A
handleisa16-bit number used to identify an open file or device. There are five standard
device handles recognized by DOS. Each of these supports redirection at the command
prompt except the error output device:

0 Keyboard (standard input)
Console (standard output)
Error output
Auxiliary device (asynchronous)

A WODN PP

Printer

These handles are predefined and do not have to be opened before being used. For
example, one can write to the console using handle 1 without any advance preparation.
Each function has acommon characteristic: if it fails, the Carry flag is set and an error
codeisreturned in AX. You can usethis error code to display an appropriate message to
the program'’s user.

Basic File Functions. Let's start by looking at alist of the most commonly used file
functions, defined by afunction number placed in AH. All thefollowing functions are
availablein high-level languages (see Table 1).

The next set of file manipulation routines allows powerful control of files, often
beyond that allowed at the command prompt. For example, we can hide or unhide afile,
change anormal fileto read-only, or change the time and date stamp on afile. We can
also search for all files matching afile specifier with awildcard character such as*.ASM.

Get/Set File Attribute (43h)

Function 43h can be used to either retrieve or change the attribute of afile. We set aflag
in AL to decide which action to perform. The following input registers are used:

AH 43h
AL (0 = get attribute, 1 = set attribute)
CX New attribute (if AL = 1)

DSDX Pointstoan ASCIIZ string with afile specification

The Carry flag is set if the function fails, and the error return codes are 1 (function
codeinvalid), 2 (file not found), 3 (path not found), and 5 (access denied). If AL = 0 (get
attribute function), the file attribute is returned in CX. The attribute may also indicate a
volume label (08h) or a subdirectory (10h). The following instructions set afile's at-
tributes to hidden and read-only:

.data
filename db "TEST. DOC', O

12.1

FILE MANIPULATION

. code

nov ah, 43h
nov al,1
nmv cx,3
nov

int
jc

Y ou may want to refer to the discussion of file attributes earlier in Section 11.1.4. Sample
values are shown in the following table. In addition, the archive bit (5) may have been set:

; set file attribute
hi dden, read-only

dx, of fset fil enane

21h

di splay_error

Table 1. Basic File Functions.

Function Description

1Ah Set disk transfer address.

3ch Create file. Create a new file or set the length of
an existing file to 0 bytes.
Open file. Open an existing file for input,

3Dh .
output, or input-output.

3Eh Close file handle.

3Fh Read from file or device. Read a predetermined
number of bytes from a file into an input buffer.
Write to file or device. Write a predetermined

40h -
number of bytes from memory to afile.

41h Delete file.

4%h Move file pointer. Position the file pointer before
reading or writing to afile.

43h Get/Set file attribute.

4Eh Find first matching file.

4Fh Find next matching file.

56h Rename file.

57h

Get/set file date and time.

REAL-MODE FILE PROCESSING

12.1.3

12.1.4

Attribute Value
Normal file 00
Read-only file 01
Hidden file 02
Hidden, read-only file 03
System file 04
Hidden, system, read-only file 07

Onereason thisfunction isimportant isthat it allows you to hide afile so it won't
appear when the DIR, DEL, and COPY commands are used. Y ou can also give afilea
read-only attribute to prevent it from being changed. In fact, the only way to delete or
update aread-only file at the DOS command prompt istofirst changeits attribute to
normal.

Delete File (41h)

Todeleteafile, set DS:DX to the address of an ASCIIZ string containing afile specifica-
tion. The specification can contain adrive and path name, but wildcard characters are not
allowed. For example, the following code del etes SAMPLE.OBJ from drive B:

.data
filespec db "B: SAMPLE. OBJ", 0O

. code

nov ah, 41h ; delete file
mov dx, offset filespec

i nt 21h

jc di splay_error

If DOSfailsand the Carry flag is set, the possible error codes are 2 (file not found), 3
(path not found), and 5 (access denied because the file has a read-only attribute). To
delete afile that has aread-only attribute, you must first call Function 43h (changefile
mode) to change its attribute.

Rename File (56h)

Function 56h renames afile if you pass a pointer to the current namein DS:DX and a
pointer to the new name in ES:DI. Both names must be ASCIIZ strings, without any
wildcard characters. This function can also be used to move afile from one directory to
another because you can specify adifferent path for each filename. Moving afileis
different from copying it; the file no longer existsin its original place. If the Carry flag is
set, the possible error codes are 2 (file not found), 3 (path not found), 5 (access denied),
and 11h (not same device). Error 11h occurs when one refers to filenames on different
disk drives. The following routine renames progl.asm to prog2.asm:

12.1 FILE MANIPULATION 5

.data
oldnane db "progl.asnt,0
newnane db "prog2.asni,0

. code

nov ah, 56h ; renane file
nov dx, of f set ol dnane

nov di, of fset newnane

int 21h

jc di spl ay_error

The following statements move progl.asm from the current directory to the \asm\progs
directory:

.data
oldnane db "progl.asnt,0
newnane db "\asnm progs\progl.asni, 0

. code

nov ah, 56h ; renane file
nov dx, of fset ol dnane

nov di , of f set newnane

int 21h

jc di splay_error

12.1.5 Get/Set File Date/Time (57h)

Function 57h can be used to read or modify the date and time stamps of afile. Both are
automatically updated when afileis modified, but there may be occasions when you wish
to set them to some other value.

Thefile must already be open before calling this function. If you wish to read the
file'sdate and time, set AL to 0 and set BX to thefile handle. To set the date and time, set
AL to 1, BX tothefile handle, CX to the time, and DX to the date. The time and date
values are bit-mapped exactly asthey arein the directory. Here, we show the date:

DH DL

I | I
I0010011|(|) Ol}(l) 101(|)
Field: Year Month Day

Bit numbers: 9-15 5-8 0-4

REAL-MODE FILE PROCESSING

12.1.6

The seconds are stored in increments of 2. A time of 10:02:02, for example, would be
mapped as

0101000001000001

Theyear valueis assumed to be added to 1980, so the date April 16, 1992 (920416)
would be stored as

0001100010010000

If you simply want to get afile's date and time, Function 4Eh (find first matching file) is
easier to use because it does not require the file to be open.

Find First Matching File (4Eh)

To search for afilein aparticular directory, call Function 4Eh (find first matching file).
Pass a pointer to an ASCIIZ file specification in DS:DX and set CX to the attribute of the
filesyou wish to find. The file specification can include wildcard characters (* and ?),
making this function particularly well suited to searches for multiple files. For example,
tolook for al fileswith an extension of ASM in the C:\ASM\PROGS directory, we would
use the following:

.data
filespec db "C \ ASM PROGS*. ASM', 0

. code

mov ah, 4Eh ; find first matching file
nmv c¢x, 0 ; find normal files only
mov dx, fil espec

i nt 21h

jc di splay_error

If amatching fileisfound, a43-bytefile description is created in memory at the
current disk transfer address (DTA). The location defaults to offset 80h from the PSP, but
we usually reset it to alocation within the data segment, using Function 1Ah (set disk
transfer address). The following is adescription of the DTA when amatching file has
been found:

12.2

APPLICATION: DISPLAY FILENAMES AND DATES 7

12.1.7

12.1.8

Offset File Infor mation

0-20 Reserved by DOS

21 Attribute

22-23 Time stamp

24-25 Date stamp

26-29 Size (doubleword)

30-42 File name (null-terminated string)

This function provides a convenient way to get the time and date stamp of afile without
having to openit. If the search fails, the Carry flag is set and AX equals either 2 (invalid
path) or 18 (no more files). The latter means that no matching files were found.

Find Next Matching File (4Fh)

Once Function 4Eh has found the first matching file, all subsequent matches can be found
using Function 4Fh (find next matching file). This presumes that afile specification with a
wildcard character is being used, such as PROG?.EXE or *.ASM. Function 4Fh usesthe
same disk transfer address as Function 4Eh and updates it with information about each
new file that isfound. When Function 4Fh finally failsto find another matching file, the
Carry flag is set. For alist of thefileinformation inthe DTA, see the explanation of
Function 4Eh (find first matching file). To call Function 4Fh, you need only place the
function number in AH:

nov ah, 4Fh ; find next matching file
int 21h
jc no_nore_files

Set Disk Transfer Address (1Ah)

The disk transfer address (DTA) is an area set aside for the transfer of file datato
memory. Originally, it was used by early DOS file functions, where file control blocks
were used to access disk files. Later, its primary use wasto provide a buffer for functions
4Eh (find first matching file) and 4Fh (find next matchingfile).

Function 1Ah can be used to set the disk transfer address to alocation in the data
segment. Otherwise, the DTA defaults to offset 80h from the start of the PSP. Most of the
time, we reset the DTA to abuffer inside our program because the default location in the

REAL-MODE FILE PROCESSING

12.2

PSP is used for other purposes (such as the program's command line parameters). The
following statements, for example, set the DTA to abuffer called myDTA :

nov ah, 1Ah ; set DTA
nmov dx, of fset nmyDTA ; to buffer in data segnent
i nt 21h

APPLICATION: DISPLAY FILENAMES AND DATES

Using what we have learned about finding matching files and file date/time formats, we
can apply theseto a program called Date Stamp (Example 1) that looks for afile or group
of files and displays each name and date. This should provide some insight on how the
DIR command worksin DOS. We would also like to be able to enter afile specification on
the program's command line that includes wildcard characters. The Date Stamp program
does the following:

It retrieves the filename typed on the command line. If no name isfound, amessageis
displayed showing the program syntax.

It findsthe first matching file. If noneisfound, an appropriate message is displayed
before returning to DOS.

It decodes the date stamp and stores the day, month, and year in variables.
It displays the filename and date.

It finds the next matching file. The last three steps are repeated until no morefiles are
found.

Example 1. The Date Stamp Program.

title Date Stanp Program (DAT. ASM

Thi s program di spl ays the nane and date stanp for
each file matching a file specification entered
on the DOS command |ine. Uses macros and a
structure

Last update: 10/14/2002

| NCLUDE | rvinel6.inc

Fi l eControl Bl ock struc
db 22 dup(?) ; header info - not used

12.2 APPLICATION: DISPLAY FILENAMES AND DATES

fileTine dw ? ; time stamp of file
fileDate dw ? ; date stanmp of file
fileSize dd ? ; size of file: not used

fileName db 13 dup(0) ; nanme of file found by DOS
Fi I eControl Bl ock ends

MmN iteint macro val ue, radix: =<10>
push ax
push bx
nov ax, val ue
nov bx, radi x
call WiteDec

pop bx
pop ax
endm

nmNVitestring macro aString
push dx
nov dx, of fset aString
call WiteString

pop dx
endm
.data
filespec db 40 dup(0) ; DOS command |ine
heading db "Date Stanp Program (DAT. EXE) "

db 0dh, Oah, 0dh, Oah, 0O
hel pMsg db "The correct syntax is

db "DAT [d:][path]fil ename[.ext]", Odh, Oah, O
DTA Fi | eControl Bl ock <>

DOS_error PROTO

nai n proc
nov bx, ds
nov ax, @lat a
nov ds, ax
nov es, ax
nmv dx, of fset fil espec ; get filespec from
call Get_Commuandt ai l ; the command |ine
jc A2 ; quit if none found

10

REAL-MODE FILE PROCESSING

MmN itestring heading

call findFirst ; find first matching file
jc A3 ; quit if none found
Al: call decodeDate ; separate the date stanp
call display_fil enanme
nmov ah, 4Fh ; find next matching file
i nt 21h
jnc Al ; continue searching
jmp A3 ; until no nore nmatches
A2: mWitestring hel pMsg ; display help
A3: exit
mai n endp

; Find first file that nmatches the file
; specification entered on command |ine

findFirst proc

nmv ah, 1Ah ; set transfer address
nmov dx, of f set DTA
i nt 21h
nmov ah, 4Eh ; find first matching file
nov cx, 0 ; normal attributes only
nov dx, of fset filespec
i nt 21h
j nc B1 ;. if DOS error occurred,
call DOCS error ; display a nmessage

B1: ret

findFirst endp

; Translate the encoded bit format of a file's

; date stanp.

.data

nmont h dw ? ; temporary storage for
day dw 2 ; month, day, year

year dw ?

. code

decodeDat e proc
nmov bx, of fset DTA. fil eDate

12.2

APPLICATION: DISPLAY FILENAMES AND DATES

11

ret

dx, [bx]
ax, dx
ax, 001Fh
day, ax
ax, dx
ax, 5

ax, 000Fh
nont h, ax
ax, dx
ax, 9

ax, 1980
year, ax

decodeDat e endp

1

Wite both fil enane

di splay_fil ename proc
mNitestring DTA fil eNanme
fill _with_spaces

mAiteint nonth

cal

cal

write_dash

nWiteint day

cal

write_dash

mNiteint year

call
ret

Crlf

di splay_fil ename endp

1

and date

get the day

clear bits 5-15
get the nonth
shift right 5 bits
clear bits 4-15
get the year

shift right 9 bits

year is relative to 1980
save the year

stanp to consol e.

display a

display a "-"

Pad right side of the filenane with spaces

fill _with_spaces proc
nov cx, 15
110}

El:

; cal

Str_length

max file size plus 3 spaces
di,of fset DTA.fileName ; get |length

AX =

| ength of filenane

I NVOKE Str_| ength, ADDR DTA. fil eNane
| oop counter
di spl ay character

sub

CX, ax
ah, 2
dl, 20h
21h

El

1
’
1
1

space
wite
until

spaces
cX =0

12 REAL-MODE FILE PROCESSING
ret
fill _with_spaces endp
write_dash proc ; wite a hyphen
push ax
push dx
nov ah, 2
nov dl, -
i nt 21h
pop dx
pop ax
ret
write_dash endp
end nain
Main Procedure. The main procedure calls routinesto retrieve the command tail and find
the first matching file. From that point on, it is essentially aloop that decodes and
displaysthe date and looks for other matching files.
FindFirst Procedure. The FindFirst procedure calls Function 1Ah to set the disk transfer
address, where fileinformation is stored when matching files are found. We call Function
4Eh to find the first matching file and return to main. The Carry flag is set if no matching
filesare found.
DecodeDate Procedure. The DecodeDate procedure is the most complex one because
each field (day, month, year) must be masked and shifted to theright. Aseach valueis
isolated, it isstored in avariable. The day of the week occupies bits 0-4, so we clear bits
5-15 and move the result to day. The month number is stored in bits 5-8, so AX is shifted
5 bitsto the right. We clear all other bits and store the result in month. The year number is
stored in bits 9-15, so we shift AX 9 bitsto the right. We add 80 because the dateis
alwaysrelative to 1980.
12.3 FILE I/O SERVICES
12.3.1 Create File (3Ch)

To create anew file or to truncate an existing fileto 0 bytes, Function 3Ch should be
used. Thefileisautomatically opened for both reading and writing, but that can be
changed by calling Function 43h (change file mode) after thefileis open. DS:DX must
point to an ASCIIZ string with the name of thefile, and CX should contain one or more of
the following attribute values:

00h Normal file
01lh Read-only file

12.3 FILE 1/O SERVICES 13

02h Hidden file
04h Systemfile (rarely used)

A sampleroutine that creates afile with anormal attribute is shown here. Thefileis
created on the default drive in the current directory. We would pass the offset of the
filename to the procedurein DX:

CreateFile proc ; Input: DX points to fil enane
push cx
push dx
nov ah, 3Ch ; function: create file
nov cx, 0 ; normal attribute
int 21h ; call DGCS
pop dx
pop X
ret

CreateFil e endp

The following statements show how CreateFile might be called:

.data
newfile db "NEWILE. DOC', 0
handle dw ?

. code

nov dx, of fset newfile ; pass the fil ename of fset

call CreateFile ; create the file

jc di spl ay_error ; error? display a nessage

nov handl e, ax ; no error: save the handle

If thefileis opened successfully, a 16-bit file handleisreturnedin AX. Thevalueis5if
thisisthefirst file opened, but it is larger when other files are already open.

Protecting Existing Files. One disadvantage of using Function 3Ch (createfile) isthat
one might inadvertently destroy an existing file with the same name. There are a couple
of solutionsto this problem. Y ou can attempt to open the file for input, using Function
3Dh (openfile). If the Carry flagisset and AX = 2 (file not found), you can safely use the
createfile function.

Another solution isto use Function 5Bh (create new file). It aborts and returns error
50hif thefile already exists. For example:

.data
filename db "FILEl. DOC', 0

14

REAL-MODE FILE PROCESSING

12.3.2

. code

nov ah, 5Bh ; create newfile
nmv c¢x, 0 ; normal attribute
nmov dx, of fset fil enane

i nt 21h

jc error_routine

Error Codes. If DOS setsthe Carry flag, the error number it returns should be 3, 4, or 5.
Error 3 (path not found) means the file specifier pointed to by DX probably contains a
nonexistent directory name. For example, you may have specified the following, when in
fact the subdirectory nameis ASM, not ASMS:

filel db 'C \ASMS\ FILEl1. ASM, 0

Error 4 (too many open files) occurs when you have exceeded the maximum number
of openfiles set by DOS. By default, DOS allows only eight open files. Since thefirst five
of these arein use by DOS (for standard file handles), that leaves only three files for use
by application programs. Y ou can change this number with the FILES command in the
CONFIG.SY Sfile (activated when you boot the system). For example,

files=32

After deducting the five handles used by DOS, there would be 27 handles available
for programsto use. But DOS still allows each programto have a maximum of 20 open
files. It is possibleto change this maximum value by calling INT 21h, Function 67h: BX
should contain the number of desired handles (1 to 65,534). The following statements set
the maximum to 30 files per program:

nmov ah, 67h
mov bx, 30
int 21h

Error 5 (access denied) indicates that you may be trying to create afile that already
exists and has aread-only attribute. Y ou may betrying to create afile with the same name
asasubdirectory, or you may also be trying to add a new entry to aroot directory that is
already full.

In some versions of DOS, Error 2 (file not found) is generated if you leave a carriage
return at the end of afilename.
Open File (3Dh)

Function 3Dh opens an existing file in one of three modes: input, output, or input-output.
AL containsthe file mode to be used, and DS:DX pointsto afilename. Normal and hidden
files can be opened. If the open is successful, avalid file handleisreturned in AX:

12.3

FILE 1/O SERVICES 15

12.3.3

.data
filenane db "A\FILE1lL.DCC,O0
infilehandle dw ?

. code

nov ah, 3Dh ; function: open file

mov a,0 ; choose the input node

nov dx, of fset filenane

int 2h ; call DOs

jc di splay_error ; error? display a nmessage
nov infil ehandl e, ax ; no error: save the handle

File Mode. The file mode placed in AL can have one of three values:

AL Mode

0 Input (read only)

1 Output (write only)
Input-output

To open afilein output mode for sequential writing, Function 3Ch (createfile)is
probably best. On the other hand, to read and write datato afile, Function 3Dh (openfile)
is best. Random-access file I/O requires Function 3Dh.

Error Codes. If CF =1, AX contains one of the following error codes: Error 1 (invalid
function number) means you are trying to share afile without having loaded the SHARE
program. Error 2 (file not found) indicates that DOS was not able to find the requested
file. Error 3 (path not found) means you specified an incorrect directory namein the
filename's path. Error 4 (too many open files) indicates that too many files are currently
open. Error 5 (access denied) means the file may be set to read-only, or it may bea
subdirectory or volume name.

Close File (3Eh)

To close afile, call Function 3Eh and place the file's handlein BX. Thisfunction flushes
DOS'sinternal file buffer by writing any remaining data to disk and makes the file handle
availableto other files. If the file has been written to, it is saved with anew file size, time
stamp, and date stamp. The following instructions close the file identified by
infilehandle:

.data
infile db 'B:\FlILElL. DOC,O0
infilehandle dw ?

. code

16

REAL-MODE FILE PROCESSING

12.34

mov ah, 3Eh ; close file handl e
mov bx, infilehandl e

int 21h

jc display_error

The only possible error code is 6 (invalid handle), which meansthe file handlein BX
does not refer to an open file.

Read From File or Device (3Fh)

In Chapter 5 we showed how to use Function 3Fh to read from standard input, which
ordinarily isthe keyboard. Thisfunctionisvery flexible because it can easily read from a
disk file. First, you haveto call Function 3Dh to open the file for input; then, using the
file handle obtained by this call, you can call Function 3Fh and read from the open file.

After calling thisfunction, if the Carry flag is set, the error code is either 5 or 6.
Error 5 (access denied) probably means the file was open in the output mode, and error 6
(invalid handle) indicates that the file handle passed in BX does not refer to an open file.
If the Carry flag is clear after the operation, AX contains the number of bytes read.

The information returned by Function 3Fh is useful when checking for end of file. If
thereis no more datain thefile, thevaluein AX islessthan the number of bytesthat were
requested (in CX). In the following code example, we jump to alabel called Exit if the
end of the file has been reached:

.data

bufferSi ze = 512

filehandl e dw ?

buffer db bufferSize dup(0)

. code

nov ah, 3Fh ; read fromfile or device
mov bx, fil ehandl e ; BX =file handl e

mov cx, bufferize ; nunber of bytes to read
mov dx, of fset buffer ; point to buffer

int 2th ; read the data

jc Di spl ay_error ; error if CF=1

cnp ax, cx ; conpare to bytes requested
jb Exi t ; yes: quit reading

12.3.5 Write to File or Device (40h)

Function 40h is used when writing to adevice or afile. Place avalid filehandlein BX,
place the number of bytesto writein CX, and point DS:DX to the buffer where the data
are stored. DOS automatically updates the file pointer after writing to the file, so the next

12.4 RANDOM FILE ACCESS 17
call to Function 40h will write beyond the current position. In the following example, we
write the contents of buffer to the fileidentified by handle:

.data
buf f er db 100h dup(?) ; output buffer
handl e dw ? ; file handl e
. code
wite_ to_file:
nov ah, 40h ; wite to file/device
nov bx, handl e ; file handl e returned by OPEN
nov cXx, 100h ; nhumber of bytes to wite
nov dx, of fset buffer ; DX points to the buffer
int 21h ; call DOS
jc display_error ; error? di splay nmessage.
cnp ax, 100h ; all bytes witten?
jne close file ; no: disk is full
If the Carry flag is set, AX contains error code 5 or 6. Error 5 (access denied) means
the fileisopen in the input mode, or the file has aread-only attribute. Error 6 (invalid
handle) means the number in BX does not refer to a currently open file handle. If the
Carry flag isclear but AX contains a number that isless than the requested number of
bytes, an input-output error may have occurred. For example, thedisk could be full.
12.4 RANDOM FILE ACCESS

Random file processing is surprisingly simplein assembly language. Only one new
function needsto be added to what we already know—Function 42h (movefile pointer),
which makesit possible to locate any record in afile. Each high-level language tendsto
have a specific syntax for random file processing. DOS, on the other hand, makes very
little distinction between sequential and random files.

Random accessis possible only when the recordsin afile have afixed length. Thisis
because the record length is used to calculate each record's offset from the beginning of
thefile. A text file usually hasvariable-length records, each delimited by an end-of-line
marker (ODh, OAh). Thereis no practical way to locate individual variable-length records
because their offsets are not determined by their lengths.

In the following illustration, Filel has fixed-length records, so we calcul ate the
beginning of each record by multiplying the record number minus 1 by 20. File2 stores
the same data in acomma-delimited text file. There are comma delimiters between fields,
and end-of-line markers (0Dh,0Ah) at the end of each record. The position of any one

18

REAL-MODE FILE PROCESSING

124.1

record cannot be cal cul ated because each record has adifferent length. Record 2 begins
at offset 000F, record 3 at offset 0022, and so on:

Filel: Record offsets (hexadecimal): 0000,0014,0028,003C:

1 2 3 4
0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEFO
1000AU 00300H1003BAKER 02000B2001DAVI DSON 40000H3000GONZALEZ 50000A

File2: Record offsets (hexadecimal): 0000,000F,0022,0039:

1 2 3 4
0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEFO
1000, AU, 300, H.. 1003, BAKER, 2000, B. . 2001, DAVI DSON, 40000, H. . 3000, GONZALEZ, 50000, A. .

Move File Pointer (42h)

Function 42h moves the file pointer to anew location (the file must already be open). The
input registers are

AH 42h

AL Method code (type of offset)

BX Filehandle

CX Offset, high

DX Offset, low

The offset can be relative to the beginning of the file, the end of thefile, or the
current file position. When the function is called, AL contains amethod code that identi-
fies how the pointer will be set, and CX:DX contains a 32-bit offset:

AL Contentsof CX:DX
Offset from the beginning of thefile

1 Offset from the current location
2 Offset from the end of thefile

Result Values. If the Carry flag is set after the function is called, DOS returns either Error
1 (invalid function number) or Error 6 (invalid handle). If the operation is successful, the
Carry flagiscleared and DX:AX returns the new location of the file pointer relative to the
start of the file (regardless of which method code was used).

Example: Locating a Record. Suppose we are processing arandom file with 80-byte
records, and we want to find a specific record. The LSEEK procedure shown in Example 2

12.4

RANDOM FILE ACCESS 19

moves the file pointer to the position implied by the record number passed in AX. Assum-
ing that records are numbered beginning at 0, we multiply the record number by the
record length to find its offset in the file;

Example 2. Locating a Record with the L seek Procedure.

Lseek proc ; AX = record number
push bx
push cx
nov bx, 80 ; DXt AX = (AX * 80)
mul bx
nov cX, dx ; upper half of offset in CX
nov dx, ax ; lower half of offset in DX
nov ah, 42h
nov al,O ; method: offset from beginning
nov bx, handl e
int 21h ; locate the file pointer
pop cx
pop bx
ret

Lseek endp

For example, record 9 would be located at offset 720 and record 0 would be located at
offset O:

Offset = 9 * 80
Offset = 0 * 80

720
0

The ReadRecord procedure in Example 3 uses Function 3Fh to read 80 bytes from the
file. To read arecord, we simply place the desired record number in AX and call both
L seek and ReadRecord:

nov ax, record_nunber
call Lseek
call ReadRecord

Example 3. The ReadRecord Procedure.

ReadRecord proc

pusha
nov ah, 3Fh ;. read fromfile or device
nov bx, handl e ; fileldevice handle

nov cx, 80 ; nunber of bytes to read

20

REAL-MODE FILE PROCESSING

nmov dx, of f set buffer
i nt 21h
popa
ret
ReadRecord endp

Example: Appendto aFile. Function 42h is also used to append to afile. The file may be
either atext file with variable-length records or afile with fixed-length records. The trick
isto use method code 2, to position the file pointer at the end of the file before writing
any new records. The SeekEOF procedure in Example 4 does this.

Example 4. The SeekEOF Procedure.

SeekEOF proc

pusha

nov ah, 42h ; position file pointer
mv al,?2 c relative to end of file
mov bx, handl e

nmv c¢x,0 ; offset, high

mv dx, 0 ; offset, | ow

i nt 21h

popa

ret

SeekEOF endp

Using a Negative Offset. If the method codein AL iseither 1 or 2, the offset value can be
either positive or negative, presenting some interesting possibilities. For example, one
could back up the file pointer from the current position (using method 1) and reread a
record. Thiswould even work for atext file with variable-length records:

mov ah, 42h ; function: nove pointer

nmv al,l
net hod: relative to current position

nmov bx, handl e
mv cx, 0

nmov dx, -10 ; back up 10 bytes

i nt 21h

jc error_routine ; exit if thereis an error
nov ah, 3Fh ; function: read file

nmov cx, 10 ; read 10 bytes

mov dx, of f set i nbuf
i nt 21h

12.5 READING A BITMAP FILE 21

12.5 READING A BITMAP FILE

I'n this section we present a procedure called ShowBMP that |oads a Windows-style
bitmap from afile and displaysit on the screen. The bitmap can have aresolution up to
320x200, with 256 colors. See the program in Example 5.

When the ShowBMP procedureis called, DS:DX must point to a null-terminated
filename. Inside the procedure, we call the OpenlnputFile procedure from the link library
and quit if the procedure cannot open the file. Next, the ShowBM P procedure reads the
bitmap file's header record. The ReadHeader procedure reads 54 bytes into a buffer and
callsthe CheckValid procedure to make sure the bitmap header is recognized.

The CheckValid procedure looks for the string “BM” at the start of thefile, and if it
findsit, returns. The program calls GetBMPInfo to read the bitmap header record. For
example, the header contains the offset of the beginning of the graphic image, the number
of colorsin the bitmap, and the bitmap’ s horizontal and vertical resoltuion

The ReadPal procedure reads the graphic pallete into memory. The procedure reads
acount of the number of colors and loads the complete palette into avariable. The InitVid
procedure inializes the video display into graphcis mode, and the LoadBMP procedure
load sand displaysthe bitmap file. The LoadBM P procedure takes into account that BMP
files store graphicsimages upside-down. Thefileisread one graphicsline at atime,
which tends to slow the program down.

Thisprogramisjust a quick demonstration of the technque of 1oading bitmaps, but
with some experimentation, you should be able to load and display a bitmap anywhere on
the screen.

Example 5. Reading and Displaying a Bitmap File.

Bi t mrap Di splay Program (bitmap. asm

Thi s program denonstrates the ShowBMP procedure from Section 12.5
in "Assenbly Language for Intel-Based Conmputers” by Kip R Irvine
(Third Edition)

| mpl enent ati on Not es:
; The bitmap size nmust be no larger than 320x200. It may be 16-col or
; or 256-color. Two test files are supplied with this program Select
either one by changing the filename variable at |abel TESTI1.
The programwill look for the bitmap file in the same directory as
; the EXE file. The filename cannot be | onger than 8 characters, plus
t he BMP extension.

| NCLUDE | rvinel6.inc

22 REAL-MODE FILE PROCESSING

Open_infile PROTO
Close_file PROTO

.data

; Two denonstration files supplied with this program
filenanel DB "16col or.bmp",0

filenane2 DB "256col or.bmp",0

vnode DB ?

. code

mai n proc
nmov ax, @lat a
nmov ds, ax

; Get the current video nobde and save it in a variable
mov ah, OFh
int 10h
nmov vnode, a

TEST1:
nmov dx, of fset fil enane2 ; select the bitnmap file
cal | ShowBWVP ; show the bitmap
nmov ah, 0 ; wait for key
int 16h

; Restore the startup video node and exit to OS
nov ah, 0
nmv al , vnode
int 10h

nmov ax, 4c00h
int 21h
mai n endp

ShowBMP proc

; This procedure procedure sets |oads and di splays a W ndows bitmap
; file (extension BMP). The nmaxi mumresolution is 320x200, with
; 256 colors. By Diego Escala, Mam, Florida, used by pern ssion

12.5

READING A BITMAP FILE 23

;. Recei ves
; Returns: nothing

pusha

call Open_infile
jc Fil eErr

nov bx, ax

call ReadHeader
jc I nval i dBMP
cal l ReadPa

push es

call Initvid

cal l SendPal

call LoadBWP
call Close file
pop es

jmp Pr ocDone
FileErr:

nov ah, 9

nov dx, of fset nsgFil eErr
int 21h

jmp Pr ocDone

I nval i dBMP,

nov ah, 9

nov dx, of f set nsgl nvBMP
int 21h

Pr ocDone:

popa

ret

ShowBWP endp

; Check the first two bytes of the file.

DS: DX points to an ASCI|Z string containing the BWP file path.

Save registers

Open file pointed to by DS: DX

Error? Display error nessage and quit

Put the file handle in BX

Reads the 54-byte header containing file info
Not a valid BMP file? Show error and quit
Read the BMP's palette and put it in a buffer

Set up the display for 320x200 VGA graphics
Send the palette to the video registers

Load the graphic and display it
Close the file

; Restore registers

If they do not

; match the standard begi nning of a BMP header ("BM'),

; the carry flag is set

CheckVal id proc
clc
nov si, of fset Header

24 REAL-MODE FILE PROCESSING

nov di, of fset BMPSt art

nmov cx, 2 ; BV IDis 2 bytes |long

CVI oop

nov al , [si] ; CGet a byte fromthe header
nov dl, [di]

cnmp al , dl ; Is it what it should be?

j ne Not Val i d ; If not, set the carry flag
inc si

inc di

| oop CVI oop

jmp Cvdone

Not Val i d
stc

Cvdone
ret
CheckVal i d endp

Get BMPI nf o proc
; This procedure pulls sone inmportant BWMP info fromthe header
and puts it in the appropriate variables

nov ax, header [0Ah] ; AX = O fset of the beginning of the graphic
sub ax, 54 ; Subtract the length of the header
shr ax, 2 ; and divide by 4
mov Pal Si ze, ax ; to get the nunmber of colors in the BWP
; (Each palette entry is 4 bytes |ong).
nmov ax, header[12h] ; AX = Horizontal resolution (w dth) of BMP
nmov BMPW dt h, ax ; Store it.
nmov ax, header [16h] ; AX = Vertical resolution (height) of BW
nmov BMPHei ght, ax ; Store it.
ret
Get BMPI nf o endp
InitVid proc

This procedure initializes the video node and nakes ES point to
vi deo nenory.

nov ax, 13h

12.5 READING A BITMAP FILE 25

in
pu
po
re
I'n

Lo

no
Sh
pu
no
sh
sh
ad

re

po
lo
re
Lo

t 10h ; Set video npde to 320x200x256
sh 0A000h

p es ; ES = A000Oh (video segnent).

t

itVid endp

adBMP proc

BMP graphics are saved upsi de-down. This procedure reads the graphic
line by Iine, displaying the lines frombottomto top. The line at

which it starts depends on the vertical resolution, so the top-Ileft
corner of the graphic will always be at the top-left corner of the screen

The video nmenory is a two-di mensional array of nmenmory bytes which
can be addressed and nodified individually. Each byte represents
a pixel on the screen, and each byte contains the color of the

pi xel at that |ocation

v cx, BMPHei ght ; We're going to display that many |ines

owLoop:

sh CX

v di, cx ; Make a copy of CX

I cx, 6 ; Miltiply CX by 64

I di,8 ; Multiply D by 256

d di, cx ; DI = CX * 320, and points to the first
; pixel on the desired screen line

% ah, 3fh

Y, cx, BMPW dt h

% dx, of fset ScrlLine

t 21h ; Read one line into the buffer

d ; Clear direction flag, for novsb

v cx, BMPW dt h

Y, si,of fset ScrlLine

p novshb ; Copy line in buffer to screen

p CX

op ShowLoop

t
adBMP endp

26 REAL-MODE FILE PROCESSING

; This procedure checks to nake sure the file is a valid BWP,
; and gets sone infornmation about the graphic.

ReadHeader proc

nov ah, 3fh

nmv cXx, 54

nov dx, of f set Header

int 21h ; Read file header into buffer.
cal | CheckVal i d cIs it avalid BWP file?

jc RHdone ; No? Quit.

call Get BMPI nf 0 ; Otherw se, process the header.
RHdone:

ret

ReadHeader endp

; Read the video palette.

ReadPal proc

nmov ah, 3fh

nov cx, Pal Si ze ; CX = Nunmber of colors in palette.

shl cx, 2 ; CX = Miltiply by 4 to get size (in bytes)
; of palette.

nov dx, of f set pal Buf f

int 21h ; Put the palette into the buffer.

ret

ReadPal endp

SendPal proc

; This procedure goes through the palette buffer, sending infornmation about
; the palette to the video registers. One byte is sent out

; port 3C8h, containing the nunber of the first color in the palette that

; wWill be sent (O=the first color). Then, RG information about the colors
; (any nunber of colors) is sent out port 3C9h.

nov si, of fset pal Buf f ; Point to buffer containing palette.
nmov cx, Pal Si ze ; CX = Nunber of colors to send.

nmv dx, 3c8h

nov al, 0 : W will start at O.

out dx, al

inc dx ; DX = 3C9h.

12.6 REVIEW QUESTIONS 27

sndLoop:
Note: Colors in a BWP file are saved as BGR val ues rat her than RGB

nov al , [si+2] ;. Get red val ue
shr al, 2 ; Max. is 255, but video only allows
val ues of up to 63. Dividing by 4
; gives a good val ue

out dx, al ; Send it.

nov al , [si+1] ; Get green val ue

shr al, 2

out dx, al ; Send it.

nov al,[si] ; Get blue val ue.

shr al, 2

out dx, al ; Send it.

add si, 4 ; Point to next color.
(There is a null chr. after every color.)

| oop sndLoop

ret

SendPal endp

.data

Header | abel word

HeadBuf f db 54 dup('H)

pal Buf f db 1024 dup('P")

Scr Li ne db 320 dup(0)

BMPSt ar t db ' BM

Pal Si ze dw ?

BMPHei ght dw ?

BMPW dt h dw ?

nsgl nvBMWP db "Not a valid BMP file.", 7, 0Dh, OAh, 24h
nsgFi | eErr db "Error opening file.",7,0Dh, 0Ah, 24h
end main

12.6 REVIEW QUESTIONS

1. If afilecurrently does not exist, what will happen if function 3Dh opensthefilein the
output mode?

2. If afileiscreated using function 3Ch, can it be both written to and read from beforeitis
closed? What if it was created with aread-only attribute?

28

REAL-MODE FILE PROCESSING

5.

10.

If you want to create a new file but do not want to accidentally erase an existing file with
the same name, what steps would your program take?

For each of the following error codes returned when INT 21hiscalled, write asingle-
sentence explanation of what probably caused the error:

Error Number Function Being Called
03h 56h (Renamefile)
05h 41h (Deletefile)
06h 57h (Set date/time)
10h 3Ah (Remove directory)
11h 56h (Renamefile)
12h 4Eh (Find first matching file)

What do the following instructions imply?

.data
filename db 'FIRST.RND , 0O

. code

nmov ah, 3Dh

mv al,?2

nmov dx, offset fil ename
i nt 21h

When afileisclosed, do you need to point DX to its filename?

What do you think the effect of the following instructions would be?

nmov ah, 3Eh
nmov bx, 0
i nt 21h

When function 3Eh (read from file or device) is called, what does it mean when the Carry
flagissetand AX =67

When function 3Ehis called (with CX = 80h), what does it mean when DOS clears the
Carry flag and returns avalue of 20hin AX?

When function 3Eh is used to read from the keyboard and CX = OAh, what will be the
contents of the input buffer when the following string isinput?

1234567890

12.7

PROGRAMMING EXERCISES 29

11.

12.

13.

14.
15.

16.
17.
18.

19.

When function 40h writes a string to the console, must the string be terminated by a zero
byte?

When using function 40h to write to an output file, does DOS automatically update the
file pointer?

If you have just read arecord from arandom file and you want to rewrite it back to the
same position in the file, what steps must you take?

Isit possible to move the file pointer within atext file?

Write the necessary instructionsto locate the file pointer 20 bytes beyond the end of the
fileidentified by filehandle.

What isthe offset of the 20th record in afile that contains 50-byte fixed-length records?
What isthe purpose of buffering input records?

Assuming that bits 0-4 hold a department number and bits 5-7 hold a store number within
the following bit-mapped field, what are the values shown here?

11000101 store depart nent
00101001 store = depart ment
01010101 store depart ment

Thefollowing WRITE_BUFFER procedure is supposed to write the contents of buffer to
the file identified by filehandle. The variable buflen contains the current length of the
buffer. If the disk isfull, the procedure should print an appropriate message. What is
wrong with the procedure'slogic?

.data
fil ehandl e dw ?
bufl en dw ?

buffer db 80 dup(?)
message db 'Disk is full.$

. code
wite_buffer proc
nov ah, 40h

nov bx, fil ehandl e
nov cx, bufl en
nov dx, of fset buffer

int 21h
jnc L1
nov dx, of fset nessage
call display
L1: ret

write_buffer endp

30 REAL-MODE FILE PROCESSING

12.7 PROGRAMMING EXERCISES

1. The" Touch" Utility

For along time, programmers have used atool called touch that reads afile specifier on
the command line, including wildcards, and changes the date/time stamp of all matching
filesto the current date and time. Write this program in assembly language. If, for
example, the user types the following command line, all filesin the current directory with
an extension of ASM will be updated:

touch *.asm

One way this program might be useful is, when distributing a set of filesto customersfor
the release of a product, you could assign the same date and time to all files.

2. Text Matching Program

Write aprogram that opens atext file containing up to 60K bytes and performs a case-
insensitive search for astring. The string and the filename are typed on the command line.
Display each line from the file on which the string appears and prefix each line with a
line number. For example;

> search line filel.txt

2. This is line 2.
10: On line 10, we have even nore text.
11: This is a single text line that is even |onger.

3. Enhanced Text Matching Program
Improve the text matching program from the previous exercise asfollows:

« Allow wildcard charactersin the file specification, so multiple files may be scanned
for the same string.

* Include acommand-line option to display filenames only. The command should be +/
—, the same one used by the grep utility supplied with Turbo Assembler. A sample
command line that displays the names of all ASM files containing the string "xlat" is

search -1+ xlat *.asm

4. FileListing Program

Write aprogram that reads atext fileinto abuffer and displaysthe first 24 lines of text.
Write the text directly to video memory for the best performance. Provide the following
keyboard command functions:

12.7

PROGRAMMING EXERCISES 31

Key
PgUp
PgDn
UpArrow
DnArrow
Esc

Function

Scroll up 24 lines
Scroll down 24 lines
Scroll up 1line
Scroll down 1 line
Exit to DOS

5. Random File Creation Program

Write aprogram that creates arandom file containing student academic information,
using data entered from the console. Each record is 27 bytes long, and there should be at
least 20 records. The record format is shown here:

Field

Student number
Last name

Course taken
Number of credits
Grade

Column
1

6

19

27

28

Here is some sample data, to which you should add at least 12 more records:

10024 ADANS
10123BEAZLI E
10200BOCKER
10201BOZEK
10330CHARLES
10405DANI ELS
10524GONZALEZ
10645HART

ENG 11003A
Cl' S 23014B
MAC 11325A
BUS 30023B
MJS 23003C
ART 10022A
CHM 40004A
ENG 11003B

6. Student File Maintenance Program

Using the file created in the previous exercise, write arandom file update program that
displays the following menu:

STUDENT FI LE MAI NTENANCE

Show a

Change
Del ete

Oo0O>»wn

singl e record

Add a new record

(edit) a record
a record

32 REAL-MODE FILE PROCESSING

E Exit program

The user may select records by record number. After each of the menu functionsis
carried out, return to the menu. Test the program with multiple additions, deletions, and
changesto records.

7. Enhanced Sector Display Program
Using the Sector Display program from the Chapter 11 Exercises as a starting point, add
the following enhancement: As a sector is displayed, let the operator press[F3] to write
the sector to an output file. Prompt for the filename, and if it already exists, append the
current sector to the end of thefile. This helpsto make the program a useful tool for
recovering lost sectors on adisk, asthe sectors can be reconverted into files.

12.7.1 Manipulating Disk Directories

1. Search for Subdirectories

Write a procedure that searches for all entriesin adisk's root directory with an attribute
of 10h (subdirectory name). Display the names.

2. Display a Subdirectory

Write a procedure that finds the first subdirectory entry in the root directory, movesto the
subdirectory, and displays alist of all itsfiles.

3. Recursive Subdirectory Display
(Requires knowledge of tree searching methods.) Write arecursive procedure called
ShowTreethat locates and displays the name of each subdirectory in the current direc-
tory. For each subdirectory, locate and display all its subdirectories. Use adepth-first
search method. For example, print out the directory tree in the following manner:

Al

AlB1
AlBl1C1
AlB1C2

AlB2

Al1B3
Al1B3C1
A1B3C2

A2B1

A2B2
A3

A3B1

33

According to thislisting, the root directory containsAl, A2, and A3, and A1 contains
Al1B1,A1B2,and A1B3. Directory A1B1 contains A1B1C1 and A1B1C2, and so on.

Showing File Times and Sizes

Enhance the Date Stamp program from Example 1 earlier in this chapter so that it also
displays each file'stime and size.

Sorting by Filename

Enhance the Date Stamp program from Example 1 earlier in this chapter by reading the
directory into an array, sorting the array by filename, and displaying the array.

Sort by Date and Time

Enhance the Date Stamp program from Example 1 earlier in this chapter by reading the
directory into an array, sorting the array by date and time, and displaying the array.

Purge Multiple Files

Write a program that takes afile specification from the command line, displays the name
of each matching file, and asksif the fileisto be deleted. When the user enters 'Y next to
any filename, deletethefile.

Search for Filesby Date

Write a program that searches for all filesin the current directory that have a date stamp
that is earlier than the current system date. Displays the names of the matching files. To
obtain the system date, call INT 21h function 2Ah. The year isreturned in CX, the month
in DH, and theday in DL. For example, October 12, 1990, would be returned as.

CX = 07C6h, DH = 0Ah, DL = 0OCh

File Hide and Unhide

Write two programs: hide.exe, which hides all files matching afile specifier, and
unhide.exe, which unhides all matching files. Only filesin the current directory are
affected. Output from each program should be alisting of the files that have been hidden
or unhidden.

These programs, which have been available as shareware utilities for many years, are
tremendously useful. A mgjor feature of HIDE is that you can protect important files from
being deleted by the DOS DEL command. Another is that the average computer user does
not know how to view the contents of these files. One good application has to do with
deleting all filesin adirectory except aparticular file. First, hide the chosen file; next,
delete all remaining filesin the directory; and finally, unhide the original file.

Both programs should read afile specifier from the command line, which might be a
single filename, a complete path, or awildcard filename, such as*.ZIP.

