
Loading and Executing a Child ProcessLoading and Executing a Child Process
by Kip Irvine. Last update: 12/11/2003
MS-DOS has always taken a fairly straightforward approach to loading and executing programs.
From the start, it was designed to be a simple, single-tasking operating system.

Many applications rely on other programs to perform useful services. Suppose you were
using a text editor, and you needed to view a calendar. You wouldn’t want to have to close the
editor to view a calendar, of course, but under MS-DOS, you could not run both programs at the
same time. The text editor’s author could include code to display calendars, but it would
increase the size of the program and probably be a poor imitation of existing calendar programs.
The answer to this problem, of course, would be to run a calendar program directly from the text
editor.

MS-DOS provides a convenient hook that lets you launch any executable program much
in the manner of a subroutine call. The calling program is suspended, the called program exe-
cutes, and when it finishes, control returns to the calling program.

There are small tradeoffs, of course. First, the calling program, which we will call the par-
ent from now on, must resize the default memory allocation assigned to it by MS-DOS when it
was loaded. The allocation is far more generous than necessary, because MS-DOS doesn’t know
how much memory you plan to use during the program’s execution.

Second, the parent program must construct a structure called a parameter block that con-
tains pointers to its own MS-DOS environment, a command-line string, and other miscellaneous
information. The parameter block is passed to the child program when INT 21h is called.

Parameter passing is a little awkward, but easily possible. You can pass a string on the
child program’s command line, as if the string were typed at the MS-DOS prompt. You can also
create a new environment block for the child program., up to 32K in size, and store parameters
in the block. The block is an array of null-terminated strings containing system variables such as
PATH, PROMPT, and COMPSEC.

When it exits, the child program can optionally return an integer return code between 0-
255. It does this by passing the integer in AL when it calls INT 21h Function 4Ch to terminate.
The return code can be retrieved by calling INT 21h Function 4Dh.

Many programs indirectly execute MS-DOS commands. They do this by loading a second
copy of the Command processor (command.com or cmd.exe) and passing it arguments on the
command line. We show on this Web site how to customize the Tools menu of TextPad and
Visual Studio to assemble and link MASM programs. A typical command line is as follows:
Copyright 2002 Kip R. Irvine. All rights reserved.

2

command.com /C make16.bat AddSub

Command.com (called the command processor) executes the batch file, passing it the name
"AddSub". When the batch file finishes, command.com is removed from memory and control
returns to the text editor.

A Simple Example

Let’s take a look at a simple program named Parent that calls a child program named Child1.
The parent program has been kept as minimal as possible. It does not use the Irvine16 library
because the library’s default stack allocation is rather large. Also, the library functions would
increase the size of our program.

Example 1. The Parent.asm Program

TITLE (Parent.asm)

.model small

.stack 100h

.286

cr = 0Dh
lf = 0Ah

PARAMBLOCK STRUC
ofsEnvironSeg WORD 0 ; ptr to environ segment
pCmdLine DWORD cmdLine ; ptr to command tail
pFcb1 DWORD fcb1 ; ptr to file control block 1
pFcb2 DWORD fcb2 ; ptr to file control block 2

PARAMBLOCK ENDS

.data
cmdLine BYTE 0,cr ; command tail

fcb1 BYTE 37 DUP(0)
fcb2 BYTE 37 DUP(0)

pBlock PARAMBLOCK <>

child BYTE "child1.exe",0

.code
main PROC

mov ax,@data
mov ds,ax

; Resize the current program's memory allocation. ES must point
; to the PSP when calling Function 4Ah.

3

mov bx,50h ; required paragraphs (ES:BX)
mov ah,4Ah ; resize memory blocks
int 21h
jc quit ; quit if failed

; Prepare to call the first child program, passing it
; a command line.

mov ax,SEG pBlock ; must set up ES
mov es,ax
mov dx,OFFSET child ; DS:DX points to EXE filename
mov bx,OFFSET pBlock ; ES:BX points to parameter block
mov ax,4B00h ; Function 4Bh, subfunction 00h
int 21h

quit:
mov ax,4C00h
int 21h

main ENDP
END main

The PARAMETERBLOCK structure contains only pointers. The ofsEnvironSeg field is
zero, indicating to MS-DOS that we want to pass a copy of the parent program’s environment
string to the child program. The pCmdLine field points to a blank command tail. The pFcb1
and pFcb2 fields are only used by early MS-DOS programs:

PARAMBLOCK STRUC
ofsEnvironSeg WORD 0 ; ptr to environ segment
pCmdLine DWORD cmdLine ; ptr to command tail
pFcb1 DWORD fcb1 ; ptr to file control block 1
pFcb2 DWORD fcb2 ; ptr to file control block 2

PARAMBLOCK ENDS

We also declare a structure variable:

pBlock PARAMBLOCK <>

The child program’s executable filename must be a null-terminated string. The file can be
in the same directory as the parent program, or it can be specified by a pathname. Following is
the filename declaration in our parent program:

child BYTE "child1.exe",0

If you wanted to put the program in the directory one level higher than the parent’s directory,
you could supply a relative path:

child BYTE "..\child1.exe",0

Or, you could also give a complete path specificication including the drive letter:

4

child BYTE "D:\MyFiles\child1.exe",0

INT 21h Function 4Ah resizes the memory allocation used by a program. The number of
paragraphs shown here is a rough estimate, based on the sizes of segments listed in the pro-
gram’s map file. The function sets the Carry flag if it cannot resize memory:

mov bx,50h ; required paragraphs (ES:BX)
mov ah,4Ah ; resize memory blocks
int 21h
jc quit ; quit if failed

Following is a listing of the map file for this program. The stop address of the last segment
(stack) is 18Fh, which indicates that the program uses 190h bytes:

 Start Stop Length Name Class
 00000H 00022H 00023H _TEXT CODE
 00024H 00088H 00065H _DATA DATA
 00090H 0018FH 00100H STACK STACK

 Origin Group
 0002:0 DGROUP

Program entry point at 0000:0000

To convert bytes to paragraphs, divide the number of bytes by 10h and add 1. Using the current
example, (190h / 10h) + 1 = 20h. At the same time, it’s better to overestimate the amount of
memory required by the parent program, to be absolutely sure that the child program does not
overwrite the parent program’s memory space.

INT 21h Function 4Bh, subfunction 00h loads and executes a child program. The DS:DX
registers must point to the child program’s filename, and ES:BX must point to the parameter
block:

mov ax,SEG pBlock ; must set up ES
mov es,ax
mov dx,OFFSET child ; DS:DX points to EXE filename
mov bx,OFFSET pBlock ; ES:BX points to parameter block
mov ax,4B00h ; Function 4Bh, subfunction 00h
int 21h

If the function fails, the Carry flag is set. This would happen if either there was not enough free
memory to run the child program, or the child program’s executable file was not found.

We should keep in mind that our parent and child programs run in
Real-address mode, which has none of the boundary protections built
into Protected mode!

5

The Child Program

The child program is simple bordering on trivial. It just displays a string to let us know it was
executed:

TITLE Child1.asm

INCLUDE Irvine16.inc
.data
str1 BYTE "Child program number 1 executing...",0dh,0ah,0
.code
main PROC

mov ax,@data
mov ds,ax
mov dx,OFFSET str1
call WriteString
mov ax,4C00h
int 21h

main ENDP
end MAIN

Passing a Command Tail

The next step in our simple program’s evolution is to pass a command tail to the child program.
The MS-DOS command tail is received as if the child program were run at the command
prompt. The following command runs child2.exe, passing it a command tail containing
"ABCDEFG":

C:\MyProgs> child2 ABCDEFG

You can read about the command tail on pages 142 and 485.

Let’s add some features to the Parent2 program that were not in the first version. For con-
venience, we’ve created a simple macro named Write that displays a string. Its one parameter is
the name of a string variable:

;---
Write MACRO varName
;
; Display a string on the console
;---

pusha
mov ah,40h ; write to file/device
mov bx,1 ; console handle
mov dx,OFFSET varName
mov cx,SIZEOF varName
int 21h
popa

ENDM

6

The cmdLine variable not includes a command tail that will be passed to the child pro-
gram. Notice that it must begin with a space and must end with 0Dh (the ASCII carriage return
character):

cmdLine BYTE 8," ABCDEFG",cr

As explained on page 485, this layout is exactly the same used by MS-DOS at offset 81h in a
program’s Program Segment Prefix area.

Next, we initialize the pCmdLine field of the PARAMBLOCK structure to the segment
and offset of cmdLine, the variable that holds the command tail:

mov dx,OFFSET child
mov WORD PTR pBlock.pCmdLine,OFFSET cmdLine
mov WORD PTR pBlock.pCmdLine+2,SEG cmdLine
mov bx,OFFSET pBlock
mov ax,4B00h ; Execute child process
int 21h

The field is a doubleword, so the WORD PTR operator is used to access it one word at a time.

When you run the Parent2 program, it executes Child2, and the latter displays the com-
mand tail. A message displays when control returns to the parent program:

Example 2. The Parent2 Program

Title (Parent2.asm)

.model small

.stack 100h

.286

cr = 0Dh
lf = 0Ah

;---
Write MACRO varName
;
; Display a string on the console
;---

pusha
mov ah,40h ; write to file/device
mov bx,1 ; console handle
mov dx,OFFSET varName
mov cx,SIZEOF varName

ABCDEFG
...back in parent program

7

int 21h
popa

ENDM

PARAMBLOCK STRUC
ofsEnvironSeg WORD 0 ; ptr to environ segment
pCmdLine DWORD 0 ; ptr to command tail
 DWORD fcb1 ; ptr to file control block 1
 DWORD fcb2 ; ptr to file control block 2

PARAMBLOCK ENDS

.data
str1 BYTE "Cannot resize memory block",cr,lf,0
str2 BYTE "Error trying to execute child process",cr,lf,0
str3 BYTE "...back in parent program",cr,lf,0
cmdLine BYTE 8," ABCDEFG",cr
fcb1 BYTE 37 DUP(0)
fcb2 BYTE 37 DUP(0)
pBlock PARAMBLOCK <>
child BYTE "child2.exe",0

.code
main PROC

mov ax,@data
mov ds,ax

; Shrink this program’s memory usage.
mov bx,50h ; required paragraphs (ES:BX)
mov ah,4Ah ; resize memory block
int 21h
jc CannotResize

; Set ES to the current program's data segment.
mov ax,@data
mov es,ax

; Prepare to call the child program. Set the pCmdLine
; field of the parameter block to the segment/offset of the
; command tail.

mov dx,OFFSET child
mov WORD PTR pBlock.pCmdLine,OFFSET cmdLine
mov WORD PTR pBlock.pCmdLine+2,SEG cmdLine
mov bx,OFFSET pBlock
mov ax,4B00h ; Execute child process
int 21h
jc CannotExecute
Write str3 ; "Back in parent program"

8

; Get the child program's exit type and return code.
mov ah,4Dh
int 21h ; AH = exit type, AL = return code
jmp quit

; Error messages ---------------------------------
CannotExecute:

Write str2
jmp quit

CannotResize:
Write str1
jmp quit

; End of program ---------------------------------
quit:

mov ax,4C00h
int 21h

main ENDP
END main

Example 3. The Child2 Program

The Child2 program uses a loop to retrieve and display each character in the command tail
passed from the parent program. Note that ES already points to the Program Segment Prefix
when the program begins to execute:

TITLE Child2.asm

.model small

.stack 100h

.code
main PROC

mov ax,@data
mov ds,ax

; Display the command tail.
mov cx,0
mov cl,es:[80h] ; get length byte
mov si,82h ; first nonblank byte

L1: mov dl,es:[si] ; get byte from PSP
mov ah,2 ; INT 21h Function 2
int 21h ; display on console
inc si
loop L1 ; continue until CX = 0

mov dl,0dh ; output carriage return

9

int 21h
mov dl,0ah ; output line feed
int 21h

mov ax,4C02h ; return value = 02
int 21h

main ENDP
END main

You may recall that the segment override (ES:) is required when accessing data located some-
where other than the DATA segment. You can read more about segment overrides on page 589:

mov dl,es:[si]

The Child2 program also uses INT 21h Function 4Ch to pass a return code back to the par-
ent program. It’s up to the Parent2 program to call Function 4Dh if it wants to retrieve the return
code:

mov ah,4Dh
int 21h

The value returned in AH is called the exit type, and the value in AL is the return code. You can
read more about this function on page 655. The Child2 program passes back 02 as its return
code, so the values of AH and AL in the Parent2 program are 00 and 02, respectively.

Executing a Batch File

A program that executes a child process can easily be made to execute a batch file. To do this,
you must execute the command processor shell program. In Windows 95/98, the program is
named command.com; in Windows 2000 and XP, you can execute either command.com or
cmd.exe (preferred). You must supply a complete path name when specifying the filename, as in
the following example:

child BYTE "c:\windows\system32\cmd.exe",0

The batch file’s name is passed as a command-line parameter, preceded by the /C option that
tells the command processor to return as soon as the batch file ends. The filename must contain
the complete execution path, including drive letter. For example,to run the sayHello.bat file
located in the c:\temp directory, the command line is defined as follows:

cmdLine BYTE 0," /C c:\temp\sayHello.bat",cr
cmdLineSize = (SIZEOF cmdLine) - 1

The cmdLineSize constant conveniently calculates the number of bytes in the command line, so
we execute a statement later in the program that initializes the first byte of cmdLine to its own
size:

mov cmdLine,cmdLineSize

Example 4 shows a complete program that runs the sayHello.bat file. The latter is a simple file

10
that displays a one-line message:

@ECHO The sayHello.bat file says HELLO.

When we run the program, the following lines display in the console window:

The sayHello.bat file says HELLO.
...back in calling program

Example 4. The runBat.asm Program

TITLE runBat.asm

.model small

.stack 100h

.286

cr = 0Dh
lf = 0Ah

;---
Write MACRO varName
;
; Display a string on the console
;---

pusha
mov ah,40h ; write to file/device
mov bx,1 ; console handle
mov dx,OFFSET varName
mov cx,SIZEOF varName
int 21h
popa

ENDM

PARAMBLOCK STRUC
ofsEnvironSeg WORD 0 ; ptr to environ segment
pCmdLine DWORD 0 ; ptr to command tail
 DWORD fcb1; ptr to file control block 1
 DWORD fcb2; ptr to file control block 2

PARAMBLOCK ENDS

.data
str1 BYTE "Cannot resize memory block",cr,lf,0
str2 BYTE "Error trying to execute batch file",cr,lf,0
str3 BYTE "...back in calling program",cr,lf,0

Comment @
 The batch filename must include a complete path. The leading /C
 tells the command processor to close as soon as the batch file
finishes.

11
@
cmdLine BYTE 0," /C c:\temp\sayHello.bat",cr
cmdLineSize = (SIZEOF cmdLine) - 1

fcb1 BYTE 37 DUP(0)
fcb2 BYTE 37 DUP(0)

pBlock PARAMBLOCK <>

; Complete path of MS-DOS command processor:
child BYTE "d:\windows\system32\cmd.exe",0

.code
main PROC

mov ax,@data
mov ds,ax

Comment @
 Shrink the current program's memory allocation to make room
 for the command processor. ES already points to the current
 environment segment block.The number of required paragraphs
 is a rough estimate, based on inspection of this program's MAP
file.
@

mov bx,50h ; required paragraphs (ES:BX)
mov ah,4Ah ; resize memory block
int 21h
jc CannotResize

; Set ES to the current program's data segment. This is
; required when passing ES:BX to Function 4B00h.

mov ax,@data
mov es,ax

; Prepare to call the child program. Set the pCmdLine
; field of the parameter block to the segment/offset of the
; command line string.

mov cmdLine,cmdLineSize

mov dx,OFFSET child
mov WORD PTR pBlock.pCmdLine,OFFSET cmdLine
mov WORD PTR pBlock.pCmdLine+2,SEG cmdLine
mov bx,OFFSET pBlock
mov ax,4B00h ; Execute child process
int 21h
jc CannotExecute

12
Write str3 ; "Back in parent program"

; Get the child program's exit type and return code.

mov ah,4Dh

int 21h

; AH = exit type (0 if terminated by Function 00h or 4Ch)

; AL = return code passed by child program

; Display these using CodeView (AH=00, AL=02)

jmp quit

; Error messages ---------------------------------

CannotExecute:

Write str2

jmp quit

CannotResize:

Write str1

jmp quit

; End of program ---------------------------------

quit:

mov ax,4C00h

int 21h

main ENDP

END main

Suggestions for Further Study:

1. Read Ray Duncan’s book, Advanced MS-DOS, 2nd Edition. It’s out of print, but used cop-
ies are often available at online bookstores. It only covers through MS-DOS 3.0, but the
explanations are very well done.

2. Write a menu-style program that lists a number of short tasks. Each task should be carried
out by a separate executable program. Use a table lookup (array of program names) to
select and execute each of the external programs.

3. Write a program that executes a batch file, using the method shown earlier in this article.

