
Copyright 2002 Kip R. Irvine. All rights reserved.

Loading and Executing a Child ProcessCalling C++ Functions

By Kip R. Irvine. Last update: 11/25/2002

Chapter 12 does a reasonably good job of showing you how to call assembly language proce-
dures from C++ programs. But what about calling C++ functions from assembly language?
There are at least a couple of reasons for doing so:

• Input-output is more flexible under C++, with its rich iostream library. This is particularly
true if you want to work with floating point numbers!

• C++ has extensive math libraries, which are not available for assembly language.

Declaring a C++ Function

All C++ functions called from assembly language code must be defined with the "C" and
extern modifiers. Here’s the basic syntax:

extern "C" funcName(paramlist)
{ . . . }

Rather than modifying every function defintion, it’s easier to create a list of function prototypes
inside an extern "C" block:

extern "C" {
void mySub();
int Sub2(int x, int y);
etc.

}

Then you can omit the extern and "C" modifiers from the function implementations.

Multiplication Table Example

Let’s write a simple application that prompts the user for an integer, multiplies it by ascending
powers of 2 (from 21 to 210) using bit shifting, and redisplays each product with leading padded
spaces. We will use C++ for the input-output. The assembly language program will contain calls
to three functions written in C++.

This article is written primarily for users of Assembly Language for Intel-

Based Computers, 4th Edition. You may copy and print the article, as long as

you do not alter its content.

2

Assembly Language Module

The assembly language module contains only one function, named DisplayTable. It calls a C++
function named askForInteger that inputs an integer from the user. It uses a loop to repeatedly
shift an integer named intVal to the left and display it by calling showInt.

; ASM function called from C++
.586
.model flat,C

; External C++ functions:
askForInteger PROTO
showInt PROTO, value:SDWORD, outWidth:DWORD
newLine PROTO

OUT_WIDTH = 8
START_POWER = 10

.data
intVal DWORD ?

.code
;---
DisplayTable PROC
;
; Input an integer n and display a
; multiplication table ranging from n * 2^1
; to n * 2^10.
;--

INVOKE askForInteger ; call C++ function
 mov intVal,eax ; save the integer
 mov ecx,START_POWER ; loop counter

L1: push ecx ; save loop counter
 shl intVal,1 ; multiply by 2

INVOKE showInt,intVal,OUT_WIDTH
INVOKE newLine ; output CR/LF
pop ecx ; restore loop counter
loop L1

ret
DisplayTable ENDP
END

Note an important detail: ECX must be pushed and popped before calling showInt and
newLine because compiled C++ code routinely alters the contents of general-purpose registers.
Also, we assume that askForInteger returns its integer result in the EAX register. This is stan-
dard practice for C and C++ programs.

3

The ASM module contains three function prototypes that permit the connection to the
external C++ functions. The order and sizes of parameters in the showInt prototype directly
match the parameter list of the C++ function:

; External C++ functions:
askForInteger PROTO
showInt PROTO, value:SDWORD, outWidth:DWORD
newLine PROTO

You do not have to use the INVOKE statement, of course. The same effect could be pro-
duced by using PUSH and CALL instructions. This is how the call to showInt would look:

push OUT_WIDTH ; push last argument first
push intVal
call showInt ; call the function
add esp,8 ; clean up stack

You must follow the C language calling convention, where arguments are pushed on the stack in
reverse order, and the caller is responsible for removing the arguments from the stack after the
call.

C++ Program

Now we’re ready to look at the C++ program. It begins by executing main, as do all C++ pro-
grams. This ensures the execution of required C++ startup code. It contains function prototypes
for the external assembly language procedure, as well as for the three functions being exported
from this module:

// main.cpp

#include <iostream>
#include <iomanip>
using namespace std;

extern "C" {
// declare external ASM procedure:
void DisplayTable();

// declare local C++ functions:
int askForInteger();
void showInt(int value, int width);
void newLine();

}

// program entry point
void main()
{

DisplayTable(); // call ASM procedure

4

}

// Prompt the user for an integer.

int askForInteger()
{

int n;
cout << "Enter an integer between 1 and 90,000: ";
cin >> n;
return n;

}

// Display a signed integer with a specified width.

void showInt(int value, int width)
{

cout << setw(width) << value;
}

// Display a newline.

void newLine()
{

cout << endl;
}

The code written for the three functions (askForInteger, showInt, and newLine) is standard
C++ code.

Building the Project

If you need help in building combined C++/Assembly Language projects, there are two tutorials
on the book’s Web site: one for Visual C++ 6.0, and another for Visual C++.Net. Click on the
Integrated Development Environments link from the home page.

Calling C Library Functions

The C language has a rich set of functions named the Standard C Library. The same functions
are available to all C++ programs, and by connection, to an assembly language module attached
to a C++ program.

You must declare a prototype in your code for each C function you plan to call. The fol-
lowing prototypes are for system, printf, and scanf. The system function lets you pass an oper-
ating system command such as "cls" or "dir" that would normally be typed at the command

5

prompt. The printf function displays strings, integers, and reals in a variety of formats. The
scanf function reads strings, integers, and reals from standard input:

system PROTO, pCommand:PTR BYTE
printf PROTO, pString:PTR BYTE
scanf PROTO, pFormat:PTR BYTE,pBuffer:PTR BYTE

You can usually find the original C function prototypes by accessing the help system supplied
with your C++ compiler. As is the case with MS-Windows functions, you have to translate the C
prototypes into assembly language prototypes.

Directory List Program

Let’s write a short program that clears the screen, displays the current disk directory, and asks
the user to enter a filename. (You might want to extend this program so it opens and displays the
selected file.)

C++ Stub Module

The C++ module simply contains a call to asm_main, so we can call it a stub module:

// main.cpp
// stub module: launches assembly language program

extern "C" void asm_main(); // asm startup proc

void main()
{

asm_main();
}

ASM Module

The ASM module contains the function prototypes, several strings, and a fileName variable. It
calls the system function twice, passing it "cls" and "dir" commands. Then printf is called, dis-
playing a prompt for a filename, and scanf is called so the user can input the name:

; ASM program launched from C++
.586
.model flat,C

; Standard C library functions:
system PROTO, pCommand:PTR BYTE
printf PROTO, pString:PTR BYTE
scanf PROTO, pFormat:PTR BYTE, pBuffer:PTR BYTE

.data
str1 BYTE "cls",0
str2 BYTE "dir/w",0

6

str3 BYTE "Enter the name of a file: ",0
str4 BYTE "%s",0
fileName BYTE 60 DUP(0)

.code
asm_main PROC
 ; clear the screen, display disk directory
 INVOKE system, ADDR str1
 INVOKE system, ADDR str2

 ; ask for a filename
 INVOKE printf, ADDR str3
 INVOKE scanf, ADDR str4, ADDR fileName

 ; redisplay the filename
 INVOKE printf, ADDR fileName
 ret ; return to C++ main
asm_main ENDP
END

The scanf function requires two arguments: the first is a pointer to a format string ("%s"),
and the second is a pointer to the input string variable (fileName). We will not try to explain
standard C functions here, because there is ample documentation elsewhere. You may even want
to read the standard "bible" of C, named The C Programming Language by Kernighan and
Ritchie.

If you get good enough at calling C functions, you will no longer need the Irvine32 library!

End of Article

	Declaring a C++ Function
	Multiplication Table Example
	Assembly Language Module
	C++ Program
	Building the Project

	Calling C Library Functions
	Directory List Program
	C++ Stub Module
	ASM Module

