Calling C++ Functions

By Kip R. Irvine. Last update: 11/25/2002

Thisarticleis written primarily for users of Assembly Language for Intel-
Based Computers, 4th Edition. You may copy and print the article, aslong as
you do not alter its content.

Chapter 12 does a reasonably good job of showing you how to call assembly language proce-
dures from C++ programs. But what about calling C++ functions from assembly language?
There are at least a couple of reasons for doing so:

« Input-output is more flexible under C++, withitsrich iostream library. Thisis particularly
trueif you want to work with floating point numbers!
» C++ has extensive math libraries, which are not available for assembly language.

Declaring a C++ Function

All C++ functions called from assembly |anguage code must be defined with the" C" and
extern modifiers. Here's the basic syntax:

extern "C' funcNane(paranmist)

{. . .1

Rather than modifying every function defintion, it's easier to create a list of function prototypes
inside an extern "C" block:

extern "C' {

void mySub();
int Sub2(int x, intvy);
etc.

}

Then you can omit the extern and " C" modifiers from the function implementations.

Multiplication Table Example

Let'swrite asimple application that prompts the user for an integer, multipliesit by ascending
powers of 2 (from 2lto 210) using hit shifting, and redisplays each product with leading padded
spaces. Wewill use C++ for the input-output. The assembly language program will contain calls
to three functions written in C++.

Copyright 2002 Kip R. Irvine. All rights reserved.

Assembly Language Module

The assembly language modul e contains only one function, named DisplayTable. It callsa C++
function named askFor I nteger that inputs an integer from the user. It uses aloop to repeatedly
shift an integer named intVal to the left and display it by calling showlnt.

: ASM function called from C++
. 586
.nmodel flat,C

External C++ functions:
askFor | nt eger PROTO
showl nt PROTQ, val ue: SDWORD, out W dt h: DWORD
newLi ne PROTO

OUT_WDTH = 8
START_POWER = 10

.data
i nt Val DWORD ?

Di spl ayTabl e PROC
; Input an integer n and display a
; multiplication table ranging fromn * 271

: ton* 2710.
| N\VOKE askFor | nt eger : call C++ function
nmov i ntVal , eax ; save the integer
nov ecx, START_PONER ; loop counter
L1: push ecx ; save | oop counter
shl intval,1l ; multiply by 2
| N\VOKE show nt, i nt Val , OUT_W DTH
| N\VOKE newLi ne ; output CR/ILF
pop ecx ; restore |oop counter
| oop L1

ret
Di spl ayTabl e ENDP
END

Note an important detail: ECX must be pushed and popped before calling showl nt and
newL ine because compiled C++ code routinely alters the contents of general -purpose registers.
Also, we assume that askFor I nteger returnsitsinteger result in the EAX register. Thisis stan-
dard practice for C and C++ programs.

The ASM modul e contains three function prototypes that permit the connection to the
external C++ functions. The order and sizes of parameters in the showlInt prototype directly
match the parameter list of the C++ function:

External C++ functions:
askFor | nt eger PROTO
showl nt PROTQ, val ue: SDWORD, out W dt h: DWORD
newLi ne PROTO

You do not have to use the INVOKE statement, of course. The same effect could be pro-
duced by using PUSH and CALL instructions. Thisis how the call to showlnt would look:

push OUT_W DTH ; push last argunent first
push i nt Val

call show nt ; call the function

add esp,8 ; clean up stack

You must follow the C language calling convention, where arguments are pushed on the stack in
reverse order, and the caller is responsible for removing the arguments from the stack after the
cal.

C++ Program

Now we're ready to look at the C++ program. It begins by executing main, as do all C++ pro-
grams. This ensures the execution of required C++ startup code. It contains function prototypes
for the external assembly language procedure, as well as for the three functions being exported
from this module;

/1 main.cpp

#i ncl ude <i ostreanr
#i ncl ude <i onani p>
usi ng namespace std;

extern "C' {
/1 declare external ASM procedure:
voi d DisplayTabl e();

/| declare |ocal C++ functions:

i nt askForlnteger();

void showint(int value, int width);
voi d newlLi ne();

}

/1 programentry point
voi d main()

{
Di spl ayTabl e(); /1 call ASM procedure

}

/1 Pronpt the user for an integer.

i nt askForl nteger()

{
int n;
cout << "Enter an integer between 1 and 90, 000:
cin >> n;
return n;
}

/1 Display a signed integer with a specified w dth.

void showint(int value, int width)

{
}

cout << setw(wi dth) << val ue;

/1 Display a new ine.

voi d newLi ne()

{
}

cout << endl:

The code written for the three functions (askFor I nteger, showlnt, and newL ine) is standard
C++ code.

Building the Proj ect

If you need help in building combined C++/Assembly Language projects, there are two tutorials
on the book’s Web site: one for Visual C++ 6.0, and another for Visual C++.Net. Click on the
Integrated Devel opment Environments link from the home page.

Calling C Library Functions

The C language has arich set of functions named the Sandard C Library. The same functions
are availableto all C++ programs, and by connection, to an assembly language modul e attached
to a C++ program.

You must declare a prototype in your code for each C function you plan to call. The fol-
lowing prototypes are for system, printf, and scanf. The system function lets you pass an oper-
ating system command such as "cls" or "dir" that would normally be typed at the command

prompt. The printf function displays strings, integers, and realsin avariety of formats. The
scanf function reads strings, integers, and reals from standard input:

system PROTO, pCommand: PTR BYTE
printf PROTO, pString: PTR BYTE
scanf PROTO, pFormat: PTR BYTE, pBuf f er: PTR BYTE

You can usually find the original C function prototypes by accessing the help system supplied
with your C++ compiler. Asisthe case with MS-Windows functions, you haveto translate the C
prototypes into assembly language prototypes.

Directory List Program

Let'swrite a short program that clears the screen, displays the current disk directory, and asks
the user to enter afilename. (You might want to extend this program so it opens and displaysthe
selected file))

C++ Sub Module
The C++ module simply contains acall to asm_main, so we can call it a stub module:

/1 main.cpp
/1 stub nobdul e: | aunches assenbly | anguage program

extern "C'" void asmnmain(); /1l asmstartup proc

voi d main()

{
asm nain();
}
ASM Module

The ASM module contains the function prototypes, severa strings, and afileName variable. It
callsthe system function twice, passing it "cls' and "dir" commands. Then printf iscaled, dis-
playing a prompt for afilename, and scanf is called so the user can input the name:

ASM program | aunched from C++
. 586
.nmodel flat,C

Standard C library functions:
system PROTO, pCommand: PTR BYTE
printf PROTO, pString: PTR BYTE
scanf PROTO, pFormat: PTR BYTE, pBuffer:PTR BYTE

.data
strl BYTE "cls",0
str2 BYTE "dir/w',0

str3 BYTE "Enter the nane of a file: ",0
str4 BYTE "%",0
fil eName BYTE 60 DUP(0)

. code

asm mai n PROC
; clear the screen, display disk directory
| NVOKE system ADDR stril
| NVOKE system ADDR str2

ask for a fil enane
| N\VOKE printf, ADDR str3
| N\VOKE scanf, ADDR str4, ADDR fil eNane

redi splay the filenane
| N\VOKE printf, ADDR fil eNane
ret ; return to C++ nmain
asm rmai n ENDP
END

The scanf function requires two arguments: thefirst is a pointer to aformat string ("%s"),
and the second is a pointer to the input string variable (fileName). We will not try to explain
standard C functions here, because there is ample documentation el sewhere. You may even want
to read the standard "bible" of C, named The C Programming L anguage by Kernighan and
Ritchie,

If you get good enough at calling C functions, you will no longer need the Irvine32 library!

End of Article

	Declaring a C++ Function
	Multiplication Table Example
	Assembly Language Module
	C++ Program
	Building the Project

	Calling C Library Functions
	Directory List Program
	C++ Stub Module
	ASM Module

